Soit une variété kählérienne compacte à singularités terminales. Si est nef, nous montrons que est semi-ample, c'est-à-dire qu'un multiple est engendré par ses sections globales.
Let be a compact Kähler threefold with terminal singularities such that is nef. We prove that is semiample, i.e., some multiple is generated by global sections.
DOI : 10.24033/asens.2301
Keywords: log MMP, cone theorem, contraction theorem, rational curves, Zariski decomposition, Kähler manifolds, abundance.
Mot clés : log MMP, théorème du cône, théorème de contraction, courbes rationnelles, décomposition de Zariski, variétés kählériennes, abondance.
@article{ASENS_2016__49_4_971_0, author = {Campana, Fr\'ed\'eric and H\"oring, Andreas and Peternell, Thomas}, title = {Abundance for {K\"ahler} threefolds}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {971--1025}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {4}, year = {2016}, doi = {10.24033/asens.2301}, mrnumber = {3552019}, zbl = {1386.32020}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2301/} }
TY - JOUR AU - Campana, Frédéric AU - Höring, Andreas AU - Peternell, Thomas TI - Abundance for Kähler threefolds JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 971 EP - 1025 VL - 49 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2301/ DO - 10.24033/asens.2301 LA - en ID - ASENS_2016__49_4_971_0 ER -
%0 Journal Article %A Campana, Frédéric %A Höring, Andreas %A Peternell, Thomas %T Abundance for Kähler threefolds %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 971-1025 %V 49 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2301/ %R 10.24033/asens.2301 %G en %F ASENS_2016__49_4_971_0
Campana, Frédéric; Höring, Andreas; Peternell, Thomas. Abundance for Kähler threefolds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 4, pp. 971-1025. doi : 10.24033/asens.2301. http://www.numdam.org/articles/10.24033/asens.2301/
Faisceaux amples sur les espaces analytiques, Trans. Amer. Math. Soc., Volume 274 (1982), pp. 89-100 (ISSN: 0002-9947) | DOI | MR | Zbl
Vanishing and nonvanishing theorems for numerically effective line bundles on complex spaces, Ann. Mat. Pura Appl., Volume 149 (1987), pp. 153-164 (ISSN: 0003-4622) | DOI | MR | Zbl
The cone of pseudo-effective divisors of log varieties after Batyrev, Math. Z., Volume 264 (2010), pp. 179-193 (ISSN: 0025-5874) | DOI | MR | Zbl
On the blowing down problem in -analytic geometry, J. reine angew. Math., Volume 350 (1984), pp. 178-182 (ISSN: 0075-4102) | MR | Zbl
, Complex geometry (Göttingen, 2000), Springer, Berlin, 2002, pp. 27-36 | DOI | MR | Zbl
Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., Volume 23 (2010), pp. 405-468 (ISSN: 0894-0347) | DOI | MR | Zbl
The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., Volume 22 (2013), pp. 201-248 (ISSN: 1056-3911) | DOI | MR | Zbl
Variétés kählériennes dont la première classe de Chern est nulle, J. Differential Geom., Volume 18 (1983), pp. 755-782 http://projecteuclid.org/euclid.jdg/1214438181 (ISSN: 0022-040X) | MR | Zbl
(Boucksom, S.; Eyssidieux, P.; Guedj, V., eds.), Lecture Notes in Math., 2086, Springer, Cham, 2013, 333 pages (ISBN: 978-3-319-00818-9; 978-3-319-00819-6) | DOI | MR
, Ergebn. Math. Grenzg., 4, Springer, 2004, 436 pages (ISBN: 3-540-00832-2) | DOI | MR | Zbl
Cônes positifs des variétés complexes compactes (2002)
Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. École Norm. Sup., Volume 37 (2004), pp. 45-76 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
A positivity property for foliations on compact Kähler manifolds, Internat. J. Math., Volume 17 (2006), pp. 35-43 (ISSN: 0129-167X) | DOI | MR | Zbl
, Geometry and analysis on complex manifolds, World Sci. Publ., River Edge, NJ, 1994, pp. 39-50 | DOI | MR | Zbl
, de Gruyter Expositions in Mathematics, 16, Walter de Gruyter & Co., Berlin, 1995, 398 pages (ISBN: 3-11-014355-0) | DOI | MR | Zbl
A remark on compact Kähler manifolds with nef anticanonical bundles and its applications (preprint arXiv:1305.4397 )
Compact Kähler manifolds with compactifiable universal cover, with an appendix by Frédéric Campana, Bull. Soc. Math. France, Volume 141 (2013), pp. 355-375 (ISSN: 0037-9484) | DOI | MR | Zbl
(Corti, A., ed.), Oxford Lecture Series in Mathematics and its Applications, 35, Oxford Univ. Press, Oxford, 2007, 189 pages (ISBN: 978-0-19-857061-5) | DOI | MR
Complex threefolds with non-trivial holomorphic 2-forms, J. Algebraic Geom., Volume 9 (2000), pp. 223-264 (ISSN: 1056-3911) | MR | Zbl
Kähler currents and null loci, Invent. math., Volume 202 (2015), pp. 1167-1198 | DOI | MR | Zbl
, Universitext, Springer, New York, 2001, 233 pages (ISBN: 0-387-95227-6) | DOI | MR | Zbl
Extension theorems, non-vanishing and the existence of good minimal models, Acta Math., Volume 210 (2013), pp. 203-259 (ISSN: 0001-5962) | DOI | MR | Zbl
A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds, J. Differential Geom., Volume 63 (2003), pp. 231-277 http://projecteuclid.org/euclid.jdg/1090426678 (ISSN: 0022-040X) | MR | Zbl
Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math., Volume 159 (2004), pp. 1247-1274 (ISSN: 0003-486X) | DOI | MR | Zbl
, Geometry and analysis on manifolds (Katata/Kyoto, 1987) (Lecture Notes in Math.), Volume 1339, Springer, Berlin, 1988, pp. 118-126 | DOI | MR | Zbl
, Flips for 3-folds and 4-folds (Oxford Lecture Ser. Math. Appl.), Volume 35, Oxford Univ. Press, Oxford, 2007, pp. 63-75 | DOI | MR | Zbl
Non-vanishing theorem for log canonical pairs, J. Algebraic Geom., Volume 20 (2011), pp. 771-783 (ISSN: 1056-3911) | DOI | MR | Zbl
, Classification of algebraic varieties (EMS Ser. Congr. Rep.), Eur. Math. Soc., Zürich, 2011, pp. 305-315 | DOI | MR | Zbl
On Kähler fiber spaces over curves, J. Math. Soc. Japan, Volume 30 (1978), pp. 779-794 (ISSN: 0025-5645) | DOI | MR | Zbl
, Algebraic varieties and analytic varieties (Tokyo, 1981) (Adv. Stud. Pure Math.), Volume 1, North-Holland, Amsterdam, 1983, pp. 231-302 | DOI | MR | Zbl
, Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), Volume 10, North-Holland, Amsterdam, 1987, pp. 167-178 | DOI | MR | Zbl
, Ergebn. Math. Grenzg., 2, Springer, Berlin, 1998, 470 pages (ISBN: 3-540-62046-X; 0-387-98549-2) | DOI | MR | Zbl
Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Volume 146 (1962), pp. 331-368 (ISSN: 0025-5831) | DOI | MR | Zbl
Chern classes in Deligne cohomology for coherent analytic sheaves, Math. Ann., Volume 347 (2010), pp. 249-284 (ISSN: 0025-5831) | DOI | MR | Zbl
On the birational automorphism groups of algebraic varieties, Compositio Math., Volume 63 (1987), pp. 123-142 (ISSN: 0010-437X) | Numdam | MR | Zbl
, Graduate Texts in Math., 52, Springer, New York-Heidelberg, 1977, 496 pages (ISBN: 0-387-90244-9) | MR | Zbl
Mori fibre spaces for Kähler threefolds, J. Math. Sci. Univ. Tokyo, Volume 22 (2015), pp. 219-246 (ISSN: 1340-5705) | MR | Zbl
Minimal models for Kähler threefolds, Invent. math., Volume 203 (2016), pp. 217-264 | DOI | MR | Zbl
et al., Astérisque, 211, Soc. Math. France, 1992 (ISSN: 0303-1179) | MR
Pluricanonical systems on minimal algebraic varieties, Invent. math., Volume 79 (1985), pp. 567-588 (ISSN: 0020-9910) | DOI | MR | Zbl
Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math., Volume 127 (1988), pp. 93-163 (ISSN: 0003-486X) | DOI | MR | Zbl
On the length of an extremal rational curve, Invent. math., Volume 105 (1991), pp. 609-611 (ISSN: 0020-9910) | DOI | MR | Zbl
Abundance theorem for minimal threefolds, Invent. math., Volume 108 (1992), pp. 229-246 (ISSN: 0020-9910) | DOI | MR | Zbl
Termination of log flips for algebraic 3-folds, Internat. J. Math., Volume 3 (1992), pp. 653-659 (ISSN: 0129-167X) | DOI | MR | Zbl
Log canonical singularities are Du Bois, J. Amer. Math. Soc., Volume 23 (2010), pp. 791-813 (ISSN: 0894-0347) | DOI | MR | Zbl
, Cambridge Tracts in Mathematics, 134, Cambridge Univ. Press, Cambridge, 1998, 254 pages (ISBN: 0-521-63277-3) | DOI | MR | Zbl
, Publications of the Mathematical Society of Japan, 15, Princeton Univ. Press, Princeton, NJ; Iwanami Shoten, Tokyo, 1987, 305 pages (ISBN: 0-691-08467-X) | DOI | MR | Zbl
Kodaira's canonical bundle formula and adjunction, Flips for 3-folds and 4-folds (Oxford Lecture Ser. Math. Appl.), Volume 35, Oxford Univ. Press (2007), pp. 134-162 | DOI | MR | Zbl
, Cambridge Tracts in Mathematics, 200, Cambridge Univ. Press, Cambridge, 2013, 370 pages (ISBN: 978-1-107-03534-8) | DOI | MR | Zbl
Flops, Nagoya Math. J., Volume 113 (1989), pp. 15-36 http://projecteuclid.org/euclid.nmj/1118781185 (ISSN: 0027-7630) | DOI | MR | Zbl
, Algebraic geometry—Santa Cruz 1995 (Proc. Sympos. Pure Math.), Volume 62, Amer. Math. Soc., Providence, RI, 1997, pp. 221-287 | DOI | MR | Zbl
Geography of Gorenstein stable log surfaces, Trans. Amer. Math. Soc., Volume 368 (2016), pp. 2563-2588 (ISSN: 0002-9947) | DOI | MR | Zbl
, Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), Volume 10, North-Holland, Amsterdam, 1987, pp. 449-476 | DOI | MR | Zbl
Abundance conjecture for 3-folds: case , Compositio Math., Volume 68 (1988), pp. 203-220 (ISSN: 0010-437X) | Numdam | MR | Zbl
Flip theorem and the existence of minimal models for 3-folds, J. Amer. Math. Soc., Volume 1 (1988), pp. 117-253 (ISSN: 0894-0347) | DOI | MR | Zbl
, Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), Volume 10, North-Holland, Amsterdam, 1987, pp. 551-590 | DOI | MR | Zbl
Projectivity criterion of Moishezon spaces and density of projective symplectic varieties, Internat. J. Math., Volume 13 (2002), pp. 125-135 (ISSN: 0129-167X) | DOI | MR | Zbl
Towards a Mori theory on compact Kähler threefolds. III, Bull. Soc. Math. France, Volume 129 (2001), pp. 339-356 (ISSN: 0037-9484) | DOI | Numdam | MR | Zbl
Towards a Mori theory on compact Kähler threefolds. II, Math. Ann., Volume 311 (1998), pp. 729-764 (ISSN: 0025-5831) | DOI | MR | Zbl
Sur l'effectivité numérique des images inverses de fibrés en droites, Math. Ann., Volume 310 (1998), pp. 411-421 (ISSN: 0025-5831) | DOI | MR | Zbl
Weil divisors on normal surfaces, Duke Math. J., Volume 51 (1984), pp. 877-887 (ISSN: 0012-7094) | DOI | MR | Zbl
Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat., Volume 56 (1992), pp. 105-203 ; English translation: Russian Acad. Sci. Izv. Math. 40 (1993), 95–202 (ISSN: 0373-2436) | DOI | MR | Zbl
, The Lefschetz centennial conference, Part I (Mexico City, 1984) (Contemp. Math.), Volume 58, Amer. Math. Soc., Providence, RI, 1986, pp. 261-275 | DOI | MR | Zbl
On compact analytic threefolds with nontrivial Albanese tori, Math. Ann., Volume 278 (1987), pp. 41-70 (ISSN: 0025-5831) | DOI | MR | Zbl
Kähler spaces and proper open morphisms, Math. Ann., Volume 283 (1989), pp. 13-52 (ISSN: 0025-5831) | DOI | MR | Zbl
, Cours spécialisés, 10, Soc. Math. France, Paris, 2002, 595 pages (ISBN: 2-85629-129-5) | DOI | MR | Zbl
Cité par Sources :