Abundance conjecture for 3-folds : case ν=1
Compositio Mathematica, Tome 68 (1988) no. 2, pp. 203-220.
@article{CM_1988__68_2_203_0,
     author = {Miyaoka, Yoichi},
     title = {Abundance conjecture for $3$-folds : case $\nu = 1$},
     journal = {Compositio Mathematica},
     pages = {203--220},
     publisher = {Kluwer Academic Publishers},
     volume = {68},
     number = {2},
     year = {1988},
     zbl = {0681.14019},
     language = {en},
     url = {http://www.numdam.org/item/CM_1988__68_2_203_0/}
}
TY  - JOUR
AU  - Miyaoka, Yoichi
TI  - Abundance conjecture for $3$-folds : case $\nu = 1$
JO  - Compositio Mathematica
PY  - 1988
SP  - 203
EP  - 220
VL  - 68
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1988__68_2_203_0/
LA  - en
ID  - CM_1988__68_2_203_0
ER  - 
%0 Journal Article
%A Miyaoka, Yoichi
%T Abundance conjecture for $3$-folds : case $\nu = 1$
%J Compositio Mathematica
%D 1988
%P 203-220
%V 68
%N 2
%I Kluwer Academic Publishers
%U http://www.numdam.org/item/CM_1988__68_2_203_0/
%G en
%F CM_1988__68_2_203_0
Miyaoka, Yoichi. Abundance conjecture for $3$-folds : case $\nu = 1$. Compositio Mathematica, Tome 68 (1988) no. 2, pp. 203-220. http://www.numdam.org/item/CM_1988__68_2_203_0/

[F] R. Friedman: Global smoothings of varieties with normal crossings, Annals of Math. 118 (1983) 75-114. | MR | Zbl

[FM] R. Friedman and D. Morrison: The Birational Geometry of Degenerations. Birkhäuser, Boston- Basel-Stuttgart (1983). | MR | Zbl

[Kw] Y. Kawamata: Pluricanonical systems on minimal algebraic varieties, Inv. Math. 79 (1985) 567-588. | MR | Zbl

[KKMS] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat: Toroidal embeddings I, Lect. Notes in Math. 339, Springer, Berlin -Heidelberg -New York (1973). | MR | Zbl

[Kl] V.S. Kulikov: Degeneration of K3 and Enriques surfaces, Math. USSR Izvestija 11 (1977) 957-989. | Zbl

[Ml] J. Milnor: Singular points of complex hypersurfaces, Annals of Math. Studies 61, Princeton Univ. Press, Princeton (1968). | MR | Zbl

[My] Y. Miyaoka: Kodaira dimension of a minimal 3-fold, submitted to Math. Ann.

[Mr] S. Mori: Flip theorem and the existence of minimal models for 3-folds, preprint. | MR | Zbl

[PP] U. Persson and H. Pinkham: Degeneration of surfaces with trivial canonical bundle, Ann. of Math. 113 (1981) 45-66. | MR | Zbl