Global solutions and asymptotic behavior for two dimensional gravity water waves
[Solutions globales et comportement asymptotique pour l'équation des ondes de gravité en dimension deux]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 5, pp. 1149-1238.

Cet article est consacré à une preuve d'un résultat d'existence globale pour l'équation des ondes de gravité à données de Cauchy régulières, petites et décroissantes à l'infini. On obtient de plus une description asymptotique de la solution dans les coordonnées physiques, qui montre qu'il y a diffusion modifiée.

La démonstration est basée sur un argument inductif faisant intervenir des estimations a priori dans L2 et L. Les bornes L2 sont prouvées dans [5], texte complémentaire au présent article. Elles reposent sur une méthode de formes normales paradifférentielles permettant d'obtenir des estimations d'énergie sur la formulation eulérienne de l'équation des ondes de gravité. Nous donnons ici une démonstration des bornes uniformes, en interprétant l'équation de manière semi-classique, et en combinant la méthode des champs de vecteurs de Klainerman avec la description de la solution en termes de distributions lagrangiennes semi-classiques. Cela nous permet, compte tenu des estimations L2 de [5], d'en déduire notre principal résultat d'existence globale.

This paper is devoted to the proof of a global existence result for the water waves equation with smooth, small, and decaying at infinity Cauchy data. We obtain moreover an asymptotic description in physical coordinates of the solution, which shows that modified scattering holds.

The proof is based on a bootstrap argument involving L2 and L estimates. The L2 bounds are proved in the companion paper [5] of this article. They rely on a normal forms paradifferential method allowing one to obtain energy estimates on the Eulerian formulation of the water waves equation. We give here the proof of the uniform bounds, interpreting the equation in a semi-classical way, and combining Klainerman vector fields with the description of the solution in terms of semi-classical Lagrangian distributions. This, together with the L2 estimates of [5], allows us to deduce our main global existence result.

Publié le :
DOI : 10.24033/asens.2268
Classification : 76B15, 35L60.
Keywords: Water waves equations, global solutions, Klainerman vector fields, Lagrangian distributions, semiclassical analysis.
Mot clés : Équation des ondes de gravité, solutions globales, champs de vecteurs de Klainerman, distributions lagrangiennes, analyse semi-classique.
@article{ASENS_2015__48_5_1149_0,
     author = {Alazard, Thomas and Delort, Jean-Marc},
     title = {Global solutions and asymptotic behavior  for two dimensional gravity water waves},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1149--1238},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {5},
     year = {2015},
     doi = {10.24033/asens.2268},
     mrnumber = {3429478},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2268/}
}
TY  - JOUR
AU  - Alazard, Thomas
AU  - Delort, Jean-Marc
TI  - Global solutions and asymptotic behavior  for two dimensional gravity water waves
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 1149
EP  - 1238
VL  - 48
IS  - 5
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2268/
DO  - 10.24033/asens.2268
LA  - en
ID  - ASENS_2015__48_5_1149_0
ER  - 
%0 Journal Article
%A Alazard, Thomas
%A Delort, Jean-Marc
%T Global solutions and asymptotic behavior  for two dimensional gravity water waves
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 1149-1238
%V 48
%N 5
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2268/
%R 10.24033/asens.2268
%G en
%F ASENS_2015__48_5_1149_0
Alazard, Thomas; Delort, Jean-Marc. Global solutions and asymptotic behavior  for two dimensional gravity water waves. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 5, pp. 1149-1238. doi : 10.24033/asens.2268. http://www.numdam.org/articles/10.24033/asens.2268/

Alazard, T.; Burq, N.; Zuily, C. On the water-wave equations with surface tension, Duke Math. J., Volume 158 (2011), pp. 413-499 | DOI | MR | Zbl

Alazard, T.; Burq, N.; Zuily, C. Strichartz estimates for water waves, Ann. Sci. Éc. Norm. Supér., Volume 44 (2011), pp. 855-903 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Alazard, T.; Burq, N.; Zuily, C., Studies in phase space analysis with applications to PDEs (Progr. Nonlinear Differential Equations Appl.), Volume 84, Birkhäuser, 2013, pp. 1-20 | DOI | MR | Zbl

Alazard, T.; Burq, N.; Zuily, C. On the Cauchy problem for gravity water waves, Invent. Math., Volume 198 (2014), pp. 71-163 | DOI | MR

Alazard, T.; Delort, J.-M. Sobolev estimates for two dimensional gravity water waves, Astérisque, Volume 374 (2015) | MR

Alinhac, S. Paracomposition et opérateurs paradifférentiels, Comm. Partial Differential Equations, Volume 11 (1986), pp. 87-121 (ISSN: 0360-5302) | DOI | MR | Zbl

Alazard, T.; Métivier, G. Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves, Comm. Partial Differential Equations, Volume 34 (2009), pp. 1632-1704 (ISSN: 0360-5302) | DOI | MR | Zbl

Alvarez-Samaniego, B.; Lannes, D. Large time existence for 3D water-waves and asymptotics, Invent. Math., Volume 171 (2008), pp. 485-541 (ISSN: 0020-9910) | DOI | MR | Zbl

Beale, J. T. Large-time regularity of viscous surface waves, Arch. Rational Mech. Anal., Volume 84 (1983/84), pp. 307-352 (ISSN: 0003-9527) | DOI | MR | Zbl

Beyer, K.; Günther, M. On the Cauchy problem for a capillary drop. I. Irrotational motion, Math. Methods Appl. Sci., Volume 21 (1998), pp. 1149-1183 (ISSN: 0170-4214) | DOI | MR | Zbl

Buffoni, B.; Groves, M. D.; Sun, S.-M.; Wahlén, E. Existence and conditional energetic stability of three-dimensional fully localised solitary gravity-capillary water waves, J. Differential Equations, Volume 254 (2013), pp. 1006-1096 (ISSN: 0022-0396) | DOI | MR | Zbl

Benjamin, T. B.; Olver, P. J. Hamiltonian structure, symmetries and conservation laws for water waves, J. Fluid Mech., Volume 125 (1982), pp. 137-185 (ISSN: 0022-1120) | DOI | MR | Zbl

Bourdaud, G. Realizations of homogeneous Sobolev spaces, Complex Var. Elliptic Equ., Volume 56 (2011), pp. 857-874 (ISSN: 1747-6933) | DOI | MR | Zbl

Cauchy, A. L., Mémoires présentés par divers savants à l'Académie royale des sciences de l'Institut de France et imprimés par son ordre. Sciences mathématiques et physiques, I, imprimé par autorisation du Roi à l'Imprimerie royale, 1827 ( http://gallica.bnf.fr/ark:/12148/bpt6k90181x/f14 )

Castro, A.; Córdoba, D.; Fefferman, C. L.; Gancedo, F.; López-Fernández, M. Turning waves and breakdown for incompressible flows, Proc. Natl. Acad. Sci. USA, Volume 108 (2011), pp. 4754-4759 (ISSN: 1091-6490) | DOI | MR | Zbl

Castro, A.; Córdoba, D.; Fefferman, C. L.; Gancedo, F.; Gómez-Serrano, J. Splash singularity for water waves, Proc. Nat. Acad. Sci. USA, Volume 109 (2012), pp. 733-738 (ISSN: 1091-6490) | DOI | MR | Zbl

Castro, A.; Córdoba, D.; Fefferman, C.; Gancedo, F.; Gómez-Serrano, J. Finite time singularities for the free boundary incompressible Euler equations, Ann. of Math., Volume 178 (2013), pp. 1061-1134 (ISSN: 0003-486X) | DOI | MR | Zbl

Córdoba, A.; Córdoba, D.; Gancedo, F. Interface evolution: water waves in 2-D, Adv. Math., Volume 223 (2010), pp. 120-173 (ISSN: 0001-8708) | DOI | MR | Zbl

Christianson, H.; Hur, V. M.; Staffilani, G. Strichartz estimates for the water-wave problem with surface tension, Comm. Partial Differential Equations, Volume 35 (2010), pp. 2195-2252 (ISSN: 0360-5302) | DOI | MR | Zbl

Chen, R. M.; Marzuola, J. L.; Spirn, D.; Wright, J. D. On the regularity of the flow map for the gravity-capillary equations, J. Funct. Anal., Volume 264 (2013), pp. 752-782 (ISSN: 0022-1236) | DOI | MR | Zbl

Craig, W. Non-existence of solitary water waves in three dimensions, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., Volume 360 (2002), pp. 2127-2135 (ISSN: 1364-503X) | DOI | MR | Zbl

Craig, W. An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits, Comm. Partial Differential Equations, Volume 10 (1985), pp. 787-1003 (ISSN: 0360-5302) | DOI | MR | Zbl

Craik, A. D. D., Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge Univ. Press, 1988, 322 pages (ISBN: 0-521-26740-4; 0-521-36829-4) | MR | Zbl

Craig, W., Mathematical problems in the theory of water waves (Luminy, 1995) (Contemp. Math.), Volume 200, Amer. Math. Soc., 1996, pp. 57-74 | DOI | MR | Zbl

Coutand, D.; Shkoller, S. Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., Volume 20 (2007), pp. 829-930 (ISSN: 0894-0347) | DOI | MR | Zbl

Coutand, D.; Shkoller, S. On the finite-time splash and splat singularities for the 3-D free-surface Euler equations, Comm. Math. Phys., Volume 325 (2014), pp. 143-183 (ISSN: 0010-3616) | DOI | MR | Zbl

Craig, W.; Sulem, C. Numerical simulation of gravity waves, J. Comput. Phys., Volume 108 (1993), pp. 73-83 (ISSN: 0021-9991) | DOI | MR | Zbl

Craig, W.; Sulem, C.; Sulem, P.-L. Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity, Volume 5 (1992), pp. 497-522 http://stacks.iop.org/0951-7715/5/497 (ISSN: 0951-7715) | DOI | MR | Zbl

Craig, W.; Schanz, U.; Sulem, C. The modulational regime of three-dimensional water waves and the Davey-Stewartson system, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 14 (1997), pp. 615-667 (ISSN: 0294-1449) | DOI | Numdam | MR | Zbl

Craig, W.; Wayne, C. E. Mathematical aspects of surface waves on water, Uspekhi Mat. Nauk, Volume 62 (2007), pp. 95-116 (ISSN: 0042-1316) | DOI | MR | Zbl

Darrigol, O., Oxford Univ. Press, 2005, 356 pages (A history of hydrodynamics from the Bernoullis to Prandtl) (ISBN: 0-19-856843-6) | MR | Zbl

Delort, J.-M. Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi linéaire à données petites en dimension 1, Ann. Sci. École Norm. Sup., Volume 34 (2001) erratum : Ann. Sci. École Norm. Sup. 39 (2006), 335–345 | Numdam | MR | Zbl

Dimassi, M.; Sjöstrand, J., London Mathematical Society Lecture Note Series, 268, Cambridge Univ. Press, 1999, 227 pages (ISBN: 0-521-66544-2) | DOI | MR | Zbl

Germain, P.; Masmoudi, N.; Shatah, J. Global solutions for the gravity water waves equation in dimension 3, Ann. of Math., Volume 175 (2012), pp. 691-754 (ISSN: 0003-486X) | DOI | MR | Zbl

Germain, P.; Masmoudi, N.; Shatah, J. Global existence for capillary water waves, Comm. Pure Appl. Math., Volume 68 (2015), pp. 625-687 (ISSN: 0010-3640) | DOI | MR

Guo, Y.; Tice, I. Decay of viscous surface waves without surface tension in horizontally infinite domains, Anal. PDE, Volume 6 (2013), pp. 1429-1533 (ISSN: 2157-5045) | DOI | MR | Zbl

Hayashi, N.; Naumkin, P. I. Asymptotics of small solutions to nonlinear Schrödinger equations with cubic nonlinearities, Int. J. Pure Appl. Math., Volume 3 (2002), pp. 255-273 (ISSN: 1311-8080) | MR | Zbl

Hörmander, L., Mathématiques & Applications, 26, Springer, 1997, 289 pages (ISBN: 3-540-62921-1) | MR | Zbl

Hur, V. M. No solitary waves exist on 2D deep water, Nonlinearity, Volume 25 (2012), pp. 3301-3312 (ISSN: 0951-7715) | DOI | MR | Zbl

Iooss, G.; Plotnikov, P. Multimodal standing gravity waves: a completely resonant system, J. Math. Fluid Mech., Volume 7 (2005), p. S110-S126 (ISSN: 1422-6928) | DOI | MR | Zbl

Iooss, G.; Plotnikov, P. I. Small divisor problem in the theory of three-dimensional water gravity waves, Mem. Amer. Math. Soc., Volume 200 (2009), 128 pages (ISBN: 978-0-8218-4382-6, ISSN: 0065-9266) | MR | Zbl

Ionescu, A. D.; Pusateri, F. Nonlinear fractional Schrödinger equations in one dimension, J. Funct. Anal., Volume 266 (2014), pp. 139-176 (ISSN: 0022-1236) | DOI | MR | Zbl

Ionescu, A.; Pusateri, F. A note on the asymptotic behavior of gravity water waves in two dimensions (2014) (preprint https://web.math.princeton.edu/~fabiop/2dWWasym-web.pdf )

Ionescu, A. D.; Pusateri, F. Global solutions for the gravity water waves system in 2d, Invent. Math., Volume 199 (2015), pp. 653-804 (ISSN: 0020-9910) | DOI | MR

Klainerman, S. Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math., Volume 38 (1985), pp. 631-641 (ISSN: 0010-3640) | DOI | MR | Zbl

Klainerman, S. Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., Volume 38 (1985), pp. 321-332 (ISSN: 0010-3640) | DOI | MR | Zbl

Lannes, D. Well-posedness of the water-waves equations, J. Amer. Math. Soc., Volume 18 (2005), pp. 605-654 (ISSN: 0894-0347) | DOI | MR | Zbl

Lannes, D. A Stability Criterion for Two-Fluid Interfaces and Applications, Arch. Ration. Mech. Anal., Volume 208 (2013), pp. 481-567 (ISSN: 0003-9527) | DOI | MR | Zbl

Lannes, D. Space time resonances [after Germain, Masmoudi, Shatah], Séminaire Bourbaki, 64e année, 2011/2012, exp. no 1053, Astérisque, Volume 352 (2013), pp. 355-388 | Numdam | MR | Zbl

Lannes, D., Mathematical Surveys and Monographs, 188, Amer. Math. Soc., Providence, RI, 2013, 321 pages (ISBN: 978-0-8218-9470-5) | MR | Zbl

Lindblad, H. Well-posedness for the motion of an incompressible liquid with free surface boundary, Ann. of Math., Volume 162 (2005), pp. 109-194 (ISSN: 0003-486X) | DOI | MR | Zbl

Martinez, A., Universitext, Springer Verlag, 2002, 190 pages (ISBN: 0-387-95344-2) | MR | Zbl

Masmoudi, N.; Rousset, F. Uniform regularity and vanishing viscosity limit for the free surface Navier-Stokes equations (preprint arXiv:1202.0657 ) | MR

Ming, M.; Rousset, F.; Tzvetkov, N. Multi-solitons and related solutions for the water-waves system, SIAM J. Math. Anal., Volume 47 (2015), pp. 897-954 (ISSN: 0036-1410) | DOI | MR | Zbl

Nalimov, V. I. The Cauchy-Poisson problem, Dinamika Sploš. Sredy, Volume 18 (1974), pp. 104-210 | MR

Shatah, J. Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., Volume 38 (1985), pp. 685-696 (ISSN: 0010-3640) | DOI | MR | Zbl

Shinbrot, M. The initial value problem for surface waves under gravity. I. The simplest case, Indiana Univ. Math. J., Volume 25 (1976), pp. 281-300 (ISSN: 0022-2518) | DOI | MR | Zbl

Sulem, C.; Sulem, P.-L., Applied Mathematical Sciences, 139, Springer, 1999, 350 pages (ISBN: 0-387-98611-1) | MR | Zbl

Sun, S.-M. Some analytical properties of capillary-gravity waves in two-fluid flows of infinite depth, Proc. Roy. Soc. London Ser. A, Volume 453 (1997), pp. 1153-1175 (ISSN: 0962-8444) | DOI | MR | Zbl

Schneider, G.; Wayne, C. E. The rigorous approximation of long-wavelength capillary-gravity waves, Arch. Ration. Mech. Anal., Volume 162 (2002), pp. 247-285 (ISSN: 0003-9527) | DOI | MR | Zbl

Shatah, J.; Zeng, C. A priori estimates for fluid interface problems, Comm. Pure Appl. Math., Volume 61 (2008), pp. 848-876 (ISSN: 0010-3640) | DOI | MR | Zbl

Shatah, J.; Zeng, C. Geometry and a priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math., Volume 61 (2008), pp. 698-744 (ISSN: 0010-3640) | DOI | MR | Zbl

Totz, N.; Wu, S. A rigorous justification of the modulation approximation to the 2D full water wave problem, Comm. Math. Phys., Volume 310 (2012), pp. 817-883 (ISSN: 0010-3616) | DOI | MR | Zbl

Wu, S. Almost global wellposedness of the 2-D full water wave problem, Invent. Math., Volume 177 (2009), pp. 45-135 (ISSN: 0020-9910) | DOI | MR | Zbl

Wu, S. Global wellposedness of the 3-D full water wave problem, Invent. Math., Volume 184 (2011), pp. 125-220 (ISSN: 0020-9910) | DOI | MR | Zbl

Wu, S. Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math., Volume 130 (1997), pp. 39-72 (ISSN: 0020-9910) | DOI | MR | Zbl

Wu, S. Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., Volume 12 (1999), pp. 445-495 (ISSN: 0894-0347) | DOI | MR | Zbl

Yosihara, H. Gravity waves on the free surface of an incompressible perfect fluid of finite depth, Publ. Res. Inst. Math. Sci., Volume 18 (1982), pp. 49-96 (ISSN: 0034-5318) | DOI | MR | Zbl

Zakharov, V. E. Stability of periodic waves of finite amplitude on the surface of a deep fluid, Journal of Applied Mechanics and Technical Physics, Volume 9 (1968), pp. 190-194 | DOI

Zworski, M., Graduate Studies in Math., 138, Amer. Math. Soc., 2012, 431 pages (ISBN: 978-0-8218-8320-4) | MR | Zbl

Cité par Sources :