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GLOBAL SOLUTIONS AND ASYMPTOTIC BEHAVIOR
FOR TWO DIMENSIONAL GRAVITY WATER WAVES

BY TuHomas ALAZARD AND JEaAN-MARrRc DELORT

ABSTRACT. — This paper is devoted to the proof of a global existence result for the water waves
equation with smooth, small, and decaying at infinity Cauchy data. We obtain moreover an asymptotic
description in physical coordinates of the solution, which shows that modified scattering holds.

The proof is based on a bootstrap argument involving L? and L estimates. The L? bounds are
proved in the companion paper [5] of this article. They rely on a normal forms paradifferential method
allowing one to obtain energy estimates on the Eulerian formulation of the water waves equation.
We give here the proof of the uniform bounds, interpreting the equation in a semi-classical way, and
combining Klainerman vector fields with the description of the solution in terms of semi-classical
Lagrangian distributions. This, together with the L? estimates of [5], allows us to deduce our main
global existence result.

REsuME. — Cet article est consacré a une preuve d’un résultat d’existence globale pour ’équation
des ondes de gravité a données de Cauchy régulieres, petites et décroissantes a ’infini. On obtient de
plus une description asymptotique de la solution dans les coordonnées physiques, qui montre qu’il y a
diffusion modifiée.

La démonstration est basée sur un argument inductif faisant intervenir des estimations a priori
dans L? et L®. Les bornes L? sont prouvées dans [5], texte complémentaire au présent article. Elles
reposent sur une méthode de formes normales paradifférentielles permettant d’obtenir des estima-
tions d’énergie sur la formulation eulérienne de I’équation des ondes de gravité. Nous donnons ici
une démonstration des bornes uniformes, en interprétant I’équation de maniére semi-classique, et en
combinant la méthode des champs de vecteurs de Klainerman avec la description de la solution en
termes de distributions lagrangiennes semi-classiques. Cela nous permet, compte tenu des estimations
L? de [5], d’en déduire notre principal résultat d’existence globale.

Introduction

1. Main result

Consider an homogeneous and incompressible fluid in a gravity field, occupying a time-
dependent domain with a free surface. We assume that the motion is the same in every

0012-9593/05/© 2015 Société Mathématique de France. Tous droits réservés
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1150 T. ALAZARD AND J.-M. DELORT

vertical section and consider the two-dimensional motion in one such section. At time ¢, the
fluid domain, denoted by §2(¢), is therefore a two-dimensional domain. We assume that its
boundary is a free surface described by the equation y = (¢, x), so that

Qt) ={(z,y) e RxR;y <n(tz)}.

The velocity field is assumed to satisfy the incompressible Euler equations. Moreover, the
fluid motion is assumed to have been generated from rest by conservative forces and is
therefore irrotational in character. It follows that the velocity field v: @ — R? is given
by v = V, ,¢ for some velocity potential ¢: €2 — R satisfying

1
Q) Doy =0, b+ 5[Vayd"+P+gy=0,
where ¢ is the modulus of the acceleration of gravity (¢ > 0) and where P is the pressure
term. Hereafter, the units of length and time are chosen so that g = 1.

The problem is then given by two boundary conditions on the free surface:

) { 0 = /1+ (8,1)20n¢ on 0L,

P=0 on 0,

where 9, is the outward normal derivative of 2, so that \/1 + (9;1)% 0p¢ = Oy — (0u1)0r .
The former condition expresses that the velocity of the free surface coincides with the one of
the fluid particles. The latter condition is a balance of forces across the free surface.

Following Zakharov [69] and Craig and Sulem [27], we work with the trace of ¢ at the free
boundary

1#(@ .'I}) = ¢(t7 Z, n(ta .’E))

To form a system of two evolution equations for n and 1, one introduces the Dirichlet-
Neumann operator G(n) that relates 4 to the normal derivative 9,,¢ of the potential by

(GmY)(t,z) =1+ (aﬂl)2 8n¢|y=7l(t,m)-

(This definition is made precise in the first section of the companion paper [5]. See Proposi-
tion 1.2 below). Then (7, 1) solves (see [27]) the so-called Craig-Sulem-Zakharov system

atn = G(n)1/)7

1. 1
Oy +n+ 5(8z¢) T2+ (@)

In [3], it is proved that if (n,%) is a classical solution of (3), such that (n,%) belongs
to C°([0,T]; H*(R)) for some T > 0 and s > 3/2, then one can define a velocity potential ¢
and a pressure P satisfying (1) and (2). Thus it is sufficient to solve the Craig-Sulem-
Zakharov formulation of the water waves equations.

® (G + (0:m) (@)’ = 0.

Our main result is stated in full generality in the first section of this paper. A weaker
statement is the following:

MAIN RESULT. — For small enough initial data of size ¢ < 1, sufficiently decaying at
1
infinity, the Cauchy problem for (3) is globally in time well-posed. Moreover, u = |D,|2 ¥ + in
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GLOBAL SOLUTIONS FOR TWO-DIMENSIONAL GRAVITY WATER WAVE 1151

admits the following asymptotic expansion as t goes to +oo: There is a continuous function
a: R — C, depending of € but bounded uniformly in e, such that

e (= it ie? |a(z/t)|? S
u(t,z) = %g(;) exp(4|x/t| + oL /i log(t)) +et p(t, x)

where & is some positive number and p is a function uniformly bounded for t > 1, £ € |0, &¢].

As an example of small enough initial data sufficiently decaying at infinity, consider

“4) Nle=1 =e€no, Ple=1 = o,
with 79,19 in C§°(R). Then there exists a unique solution (7, 1) in C*°([1, +oo[; H*(R))
of (3). In fact, in Theorem 1.4 we allow 1 to be merely in some homogeneous Sobolev space.

The strategy of the proof will be explained in the following sections of this introduction.
We discuss at the end of this paragraph some related previous works.

For the equations obtained by neglecting the nonlinear terms, the computation of the
asymptotic behavior of the solutions was performed by Cauchy [17] who computed the
phase of oscillations. The reader is referred to [31] and [30] for many historical comments
on Cauchy’s memoir.

Many results have been obtained in the study of the Cauchy problem for the water
waves equations, starting from the pioneering work of Nalimov [55] who proved that the
Cauchy problem is well-posed locally in time, in the framework of Sobolev spaces, under an
additional smallness assumption on the data. We also refer the reader to Shinbrot [60], Yoshi-
hara [68] and Craig [23]. Without smallness assumptions on the data, the well-posedness of
the Cauchy problem was first proved by Wu for the case without surface tension (see [64, 65])
and by Beyer-Giinther in [11] in the case with surface tension. Several extensions of their
results have been obtained and we refer the reader to Cérdoba, Cordoba and Gancedo [20],
Coutand-Shkoller [21], Lannes [47, 49, 50], Linblad [51], Masmoudi-Rousset [53] and
Shatah-Zeng [58, 59] for recent results on the Cauchy problem for the gravity water waves
equation.

Our proof of global existence is based on the analysis of the Eulerian formulation of the
water waves equations by means of microlocal analysis. In particular, the energy estimates
discussed in [5] are influenced by the papers by Lannes [47] and Iooss-Plotnikov [44] and
follow the paradifferential analysis introduced in [6] and further developed in [1, 4].

It is worth recalling that the only known coercive quantity for (3) is the Hamiltonian,
which reads (see [69, 27])

1
®) H = §/n2dx+%/¢G(n)z/)dx.

We refer to the paper by Benjamin and Olver [10] for considerations on the conservation laws
of the water waves equations. One can compare the Hamiltonian with the critical threshold
given by the scaling invariance of the equations. Recall (see [10, 18]) that if (n, ¢) solves (3),
then the functions (7, 1)) defined by

(6) 77>\(t7 .’IJ) = )‘_277 (Atv >‘2$) ) 1/)>\(t7 .’13) = >‘_3¢ (Atv >‘2'T) ()‘ > O)

are also solutions of (3). In particular, one notices that the critical space for the scaling
corresponds to 7o in H3/2(R). Since the Hamiltonian (5) only controls the L?(R)-norm of 7,

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1152 T. ALAZARD AND J.-M. DELORT

one sees that the Hamiltonian is highly supercritical for the water waves equation and hence
one cannot use it directly to prove global well-posedness of the Cauchy problem.

Given ¢ > 0, consider the solutions to the water waves system (3) with initial data
satisfying (4). In her breakthrough result [66], Wu proved that the maximal time of exis-
tence T, is larger than or equal to e®/¢ for d = 1. Then Germain-Masmoudi-Shatah [34]
and Wu [67] have shown that the Cauchy problem for three-dimensional waves is globally
in time well-posed for € small enough (with linear scattering in Germain-Masmoudi-Shatah
and no assumption about the decay to 0 at spatial infinity of |Dx|% ¥ in Wu). Germain-
Masmoudi-Shatah recently proved global existence for pure capillary waves in dimension
d = 2in [35].

There is at least one other case where the global existence of solutions is now understood,
namely for the equations with viscosity (see [9], [36] and the references therein). Then global
well-posedness is obtained by using the dissipation of energy. Without viscosity, the analysis
of global well-posedness is based on dispersive estimates. Our approach follows a variant
of the vector fields method introduced by Klainerman in [46, 45] to study the wave and
Klein-Gordon equations (see the book by Hormander in [38] or the Bourbaki seminar by
Lannes [48] for an introduction to this method). More precisely, as it is discussed later in this
introduction, we shall follow the approach introduced in [32] for the analysis of the Klein-
Gordon equation in space dimension one, to cope with the fact that solutions of the equation
do not scatter. Results for one dimensional Schrodinger equations, that display the same non
scattering behavior, have been proved by Hayashi and Naumkin [37], and global existence for
a simplified model of the water waves equation studied by Ionescu and Pusateri in [41].

Let us discuss two other questions related to our analysis : the possible emergence of
singularities in finite time and the existence of solitary waves.

An important question is to determine whether the lifespan could be finite. Castro, Cor-
doba, Fefferman, Gancedo and Gomez-Serrano conjecture (see [15]) that blow-up in finite
time is possible for some initial data. It is conjectured in [15] that there exists at least one
water-wave solution such that, at time 0, the fluid interface is a graph, at a later time ¢; > 0
the fluid interface is not a graph, and, at a later time ¢5 > t;, the fluid self-intersects. Notice
that, according to this conjecture, one does not expect global well-posedness for arbitrarily
large initial data. One can quote several results supporting this conjecture (see [14, 16, 22]).
In [14] (see also [22]), the authors prove the following result: there exists an initial data such
that the free surface is a self-intersecting curve, and such that solving backward in time the
Cauchy problem, one obtains for small enough negative times a non self-intersecting curve
of R2. On the other hand, it was conjectured that there is no blow-up in finite time for small
enough, sufficiently decaying initial data (see the survey paper by Craig and Wayne [29]).

Our main result precludes the existence of solitary waves sufficiently small and sufficiently
decaying at infinity. In this direction, notice that Sun [62] has shown that in infinitely deep
water, no two-dimensional solitary water waves exist. For further comments and references
on solitary waves, we refer the reader to [25] as well as to [13, 39, 54] for recent results.

We refer the reader to [1, 2, 19] for the study of other dispersive properties of the water
waves equations (Strichartz estimates and smoothing effect of surface tension).

Finally, let us mention that Ionescu and Pusateri [42] independently obtained a global
existence result very similar to the one we get here. The main difference is that they assume
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GLOBAL SOLUTIONS FOR TWO-DIMENSIONAL GRAVITY WATER WAVE 1153

less decay on the initial data, and get asymptotics for the space Fourier transform of the
solution, with remainders in L2, from which they deduce asymptotics in physical space
(see [40]). These asymptotics, as well as ours, show that solutions do not scatter. To get
asymptotics with remainders estimated in L°°, we shall commute iterated vector field
Z = t0; + 2x0, to the water waves equations. This introduces several new difficulties and
requires that the initial data be sufficiently decaying at infinity.

2. General strategy of proof

Let us describe our general strategy, the difficulties one has to cope with, and the ideas
used to overcome them. The general framework we use is the one of Klainerman vector fields.
Consider as a (much) simplified model an equation of the form

(Dy — P(Dy))u = N(u)

U|t:1 = €uo,

@)

where D; = %%, P(¢) is a real valued symbol (for the linearized water waves equation,
P(€) would be |¢]'/2), and N(u) is a nonlinearity vanishing at least at order two at zero.
Recall that a Klainerman vector field for D, — P(D,) is a space-time vector field Z such
that [Z, D, — P(D,)] is zero (or a multiple of D; — P(D,,)). For the water waves system,
Z will be t0; + 220, or D,. In that way, (D; — P(D,))Z*u = Z*¥ N (u) for any k, and since
P(&) is real valued, an easy energy inequality shows that

t
® 1Z*u(t, )2 < (12501, )| 12 +/1 IZ*N (w)(r, )|l 2 dr,

for any ¢ > 1. Assume first that N (u) is cubic, so that

O) NZ*N@)lr2 < Cllullel| Z¥ulle +C D7 (2% ul|ze ]| 25l 2= | 25l 2.

k1+ko+ks<k
k1,k2<ks<k—1

Assuming an a priori L> bound, one can deduce from (8) an L? estimate. More precisely,
introduce the following property, where s is a large even integer:
For t in some interval [1, T[, |lu(t, )|z~ = O(e/Vt)

(A) 1,5
andfork =0,...,5/2, [|ZFu(t, )| 1= = O(et™21%),

where Sjc are small positive numbers. Plugging these a priori bounds in (8), (9), we get

¢
dr
1Z%u(t, )2 < 125u(1, )|z +052/1 1Z*u(r, )| -

(10 t ~
+CE2/ ||Zk_1u(7',~)||Lz7'26k/2_1dr.
1

Gronwall inequality implies then that
(B) ||Zku(t7 ')||L2 = O(€t5k)7 k< S,

for some small 6, > 0 (6;, > Ce? and §;, > 25;/2).

The proof of global existence is done classically using a bootstrap argument allowing one
to show that if (A) and (B) are assumed to hold on some interval, they actually hold on the
same interval with smaller constants in the estimates.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1154 T. ALAZARD AND J.-M. DELORT

We have outlined above the way of obtaining (B), assuming (A) for a solution of the
model equation (7). In this subsection of the introduction, we shall explain, in a non technical
way, the new difficulties that have to be solved to prove (B) for the water waves equation.
Actually, the proof of a long time energy inequality for system (3) faces two serious obstacles,
that we describe now.

o Apparent loss of derivatives in energy inequalities

This difficulty already arises for local existence results, and was solved initially by Nali-
mov [55] and Wu [64, 65]. For long time existence problems, Wu [67] uses arguments
combining the Eulerian and Lagrangian formulations of the system. The approach followed
in our companion paper [5] is purely Eulerian. We explain the idea on the model obtained
from (3) paralinearizing the equations and keeping only the quadratic terms. If we denote
U=| le|771/2¢ ], such a model may be written as

oU =TyU

where T4 is the paradifferential operator with symbol A, and where A(U, z, £) is a matrix of
symbols A(U, z,&) = Ap(U, z,¢&) + A1(U, z,§), with

. 1/2
—i(@w)¢ el
/2 .

el —i(@)e
Because of the A; contribution, which is self-adjoint, the eigenvalues of A(U, z,§) are not
purely imaginary. For large |£]|, there is one eigenvalue with positive real part, which shows
that one cannot expect for the solution of 0, U = T4 U energy inequalities without derivative
losses. A way to circumvent this difficulty is well known, and consists in using the “good
unknown” of Alinhac [7]. For our quadratic model, this just means introducing as a new
unknown U = || Dmlnl s2, ], where w = ¢ — Tjp, 47 is the (quadratic approximation of the)
good unknown. In that way, ignoring again remainders and terms which are at least cubic,
one gets for U an evolution equation ,U = T4, U. Since Ay is anti-self-adjoint, one gets L?
or Sobolev energy inequalities for U. In particular, if for some s, ||| Dy | ?w|| = + ||l z- is
under control, and if one has also an auxiliary bound for ||| D.| %| -, one gets an estimate
for || De 4|l gro-1/2 + Inll -

e Quadratic terms in the nonlinearity

Ao(U,2,6) = l ] L AUz, €) = (IDal) €] [g ﬂ .

In the model equation (7) discussed above, we considered a cubic nonlinearity: this played
an essential role to make appear in the first integral in the right hand side of (10) the almost
integrable factor 1/7. For a quadratic nonlinearity, we would have had instead a 1//7-factor,
which would have given in (B), through Gronwall, a O(e*V?)-bound, instead of O(¢t°*). The
way to overcome such a difficulty is well known since the work of Shatah [57] devoted to
the non-linear Klein-Gordon equation: it is to use a normal forms method to eliminate the
quadratic part of the nonlinearity, up to terms that do not contribute to the Sobolev energy
inequality.

In practice, one looks for a local diffeomorphism at 0 in H®, for s large enough, so
that the Sobolev energy inequality written for the equation obtained by conjugation by this
diffeomorphism be of the form (10). Nonlinear changes of unknowns, reducing the water
waves system to a cubic equation, have been known for quite a time (see Craig [24] or looss
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GLOBAL SOLUTIONS FOR TWO-DIMENSIONAL GRAVITY WATER WAVE 1155

and Plotnikov [43, Lemma 1]). However, these transformations were losing derivatives, as a
consequence of the quasi-linear character of the problem. Nevertheless, one can construct a
bona fide change of unknown, without derivatives losses, if one notices that it is not necessary
to eliminate the whole quadratic part of the nonlinearity, but only the part of it that would
bring non zero contributions in a Sobolev energy inequality. This is what we do in our
companion paper [5]. Let us also mention that the analysis of normal forms for the water
waves system is motivated by physical considerations, such as the derivations of various
equations in asymptotic regimes (see [28, 26, 56, 63]).

Our proof of L2-estimates of type (B), assuming that a priori inequalities of type (A)
hold, is performed in [5] using the ideas that we just outlined. Of course, the models we have
discussed so far do not make justice to the full complexity of the water waves system. In
particular, the good unknown w is given by a more involved formula than the one indicated
above, and one also needs to define precisely the Dirichlet-Neumann operator. The latter
is done in [5]. We recall in Section 1 below the main properties of the operator G(n) when
n belongs to a space of the form C7(R) N L?(R) with v > 2, and is small enough.
Once G(n)y has been defined, one can introduce functions of (n,%), B = (9y¢)|y=n,
V = (03¢)|y=y, Where ¢ is the harmonic potential solving (1). Explicit expressions of these
quantities are given by

g — GY+ (0:1)(8:¢)
14 (0zm)?
The good unknown for the water waves equation is given by w = ¢ — Tgn. Following the
analysis in [4, 1, 6], we prove in [5] an expression for G(n)v in terms of w:

Gy = |Dzlw — 0:(Tvn) + F(n)y,

where F (1)1 is a quadratic smoothing term, that belongs to H**7=*if nisin CY N H® and
|D,|"/%4 belongs to C7=1/2 N H*=1/2 This gives a quite explicit expression for the main
contributions to G(n)y. Moreover, we prove as well tame estimates, that complement similar
results due to Craig, Schanz and Sulem (see [26], [61, Chapter 11] and [8, 44]), and establish
bounds for the approximation of G(n)y (resp. F(n)v) by its Taylor expansion at order two
G<2(n)3 (resp. F<a(n)1).

, V = 0;¢ — BOzn.

3. Klainerman-Sobolev inequalities

As previously mentioned, the proof of global existence relies on a bootstrap argument
on properties (A) and (B). We have indicated in the preceding section how (B) may be
deduced from (A). On the other hand, one has to prove that conversely, (A) and (B) imply
that (A) holds with smaller constants in the inequalities. The first step is to show that if the
L?-estimate (B) holds for k < s, then bounds of the form

(A) 1 Z*u(t, )| L = O(et™27%), k < s — 100

are true, for small positive &,. This is not (A), since the 8, may be larger than the &, of (A4),
and since this does not give a uniform bound for |lu(t, -)|| .- . But this first information will
allow us to deduce, in the last step of the proof, estimates of the form (A) from (A’) and the
equation.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1156 T. ALAZARD AND J.-M. DELORT

Let us make a change of variables x — x/t in the water waves system. If u(t, z) is given
by u(t,z) = (|Dx|1/21[1 + in) (¢, z), we define v by u(t,z) = %v(t,x/t). Weseth = 1/t
and eventually consider v as a family of functions of z depending on the semi-classical
parameter h. Moreover, for a(z,£) a function satisfying convenient symbol estimates, and
(vn)p a family of functions on R, we define

Op,,(a)vy, = a(z, hD)v, = %/e"‘sa(:c,hf)ﬁh(é) d€.

Then the water waves system is equivalent to the equation

1

(11)  (D; — Opy (€ + €]'?))v = VAQo(V) + h [CO(V) - 21)} + hER(V),

where we used the following notations

e Qo (resp. Cp) is a nonlocal quadratic (resp. cubic) form of V' = (v, ) that may be
written as a linear combination of expressions Oph(bo)[]_[f:1 Opy, (bj)v+], £ = 2 (resp.
¢ = 3), where by(£) are homogeneous functions of degree d; > 0 with Zg dy = 3/2
(resp. Zg d¢=5/2)and vy = v,v_ = 7.

e R(V) is a remainder, made of the contributions vanishing at least at order four
atV =0.

To simplify the exposition in this introduction, we shall assume that v satisfies o(hD)v = v
for some C§° (R—{0})-function ¢, equal to one on a large enough compact subset of R—{0}.
Such a property is not satisfied by solutions of (11), but one can essentially reduce to such a
situation performing a dyadic decomposition v = 3., ¢(27/hD)v.

The Klainerman vector field associated to the linearization of the water waves equation
may be written, in the new coordinates that we are using, as Z = t0; + xzJ,,. Remembering
h = 1/t and expressing 9; from Z in equation (11), we get

(12) Opy, (22¢ + |€]*)v = —VhQo(V) + h %v —iZv — Co(V)| = KM R(V).

Since we factored out the expected decay in 1/+/%, our goalis to deduce from assumptions (A)
and (B) estimates of the form || Z*v|| g = O(eh~%) for k < s — 100.

PROPOSITION. — Assume that for t in some interval [Ty, T[ (ie., for h in some inter-
val W', ho)), one has estimates (A) and (B):
(13) 1Z50| e = O(eh™%%), & < /2, | Z¥]| 2 = O(eh™%), k < s.

Denote A = {(z,dw(z));z € R*} where w(z) = 1/(4|z|). Then, if ya is smooth, supported
close to A and equal to one on a neighborhood of A, and if v§ = 1—ya, we have for k < s—100

(14) 12" Opy, (v§)v|| 2 = O(eh? %),
(15) |(hDy — dw)Z* Opy, (ya)v| 22 = 0(5;1175;6)7
(16) 1250 = O(eh_5;c),
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GLOBAL SOLUTIONS FOR TWO-DIMENSIONAL GRAVITY WATER WAVE 1157

Idea of proof. — One applies k vector fields Z to (12) and uses their commutation prop-
erties to the linearized equation. In that way, taking into account the assumptions, one gets

(17) Opy, (22€ + [€]'/%) Z%v = Op2 (eh2 %)

for some small ¢;, > 0. One remarks that 2z + |§ |1/ ? vanishes exactly on A. Consequently,

this symbol is elliptic on the support of 7§, and this allows one to get (14) by ellipticity.

To prove the second inequality, one uses the fact that
(18)  Opy (22€ + [€]'/%) 2" Opy(va)v = —Vh Op,(72) 2*Qo(V) + O (eh'~%%).

We may decompose v = vp + vpe Where vpa = Opy,(va)v and vae = Opp (75 )v. We may
write Z8Qo (V) — Z*Qo(va,vp) = B(va, Z¥vpc) + --- where B is the polar form of Q.
By (14), || Z*vac||z2 = O(eh2=%), and by assumption |[va|[z=~ = O(e). It follows that
| B(va, ZFvac)||,, = O(eh2~%). The other contributions to Z*Qo (V) —Z*Qo(va, z) may
be estimated in a similar way, up to extra contributions, that we do not write explicitly in this
outline, and that may be absorbed in the left hand side of (16) at the end of the reasoning.
The right hand side of (18) may thus be written

(19) — VhOp,(14) Z*Qo(Va) + Opz (sh'~3%),

where Vi = (va, Ua ). One notices then that since v (resp. U4 ) is microlocally supported close
to A (resp. —A), Qo(Va) is microlocally supported close to the union of 2A, 0A and —2A, so
far away from the support of the cut-off y5 (where /A = {(x, ldw(x)); xz € R*}).

Consequently, the first term in (19) vanishes, and we get
Opy, (20 +[¢]'/%) 2% Opy, (ya)v = Oy (sh'~0%).

Since 2z:¢ + |§|1/ % and £ — dw(z) have the same zero set, namely A, one deduces (15) from
this estimate using symbolic calculus.

Finally, to obtain (16), we write
|Z50allz = le™/" Z¥0p | < Clle™™/ " Z*0a |27 | Dale™ ™/ 2 ua) 112

The last factor is h=1/2|(hD, — dw)ZkvAH};/f, which is O(y/2h~%/2) by (15). Moreover,
(14) and Sobolev inequality imply that || Z*vse| = = O(eh~%), since we have assumed
that v is spectrally localized for |£| ~ 1/h. This gives (16). O

4. Optimal L°° bounds

As seen in the preceding section, one can deduce from the L2-estimates (B) some L>-esti-
mates (16), which are not the optimal estimates of the form (A) that we need (because the
exponents d;, are larger than 4", and because 8}, 1s positive, while we need a uniform estimate
when no Z field acts on v). In order to get (A), we deduce from the PDE (11) an ODE satis-
fied by v.

PROPOSITION. — Under inequalities (14) to (16), we may write

(20) v =wp + Vh(ven +v_2n) 4+ h(vsa +v_p +v_34) + h1T"g,
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where K > 0, g satisfies bounds of the form || Z*g||p~ = O(eh™%), and ves is microlocally
supported close to (A and is a semi-classical Lagrangian distribution along (A, as well as Z*wg
for k < s/2, in the following sense

1) | Z%ven || L = O(eh™%%),
(22) 0Dy, (ee(x, €)) ZFvgp || e = O(eh? %), € € {1,-2,2},
(23) |Opy (ee(, €)) Z*ven || Lo = O(eh2~%), £ € {~3,-1,3},

if eg vanishes on LA.

REMARK. — Consider a function w = a(z) exp(iw(z)/h). If o is smooth and bounded
as well as its derivatives, we see that (hD, — dw(z))w = Or~ (h), i.e., w satisfies the second
of the above conditions with £ = 1, where e;(z,§) = £ — dw(z) is an equation of A. The
conclusion of the proposition thus means that vys enjoys a weak form of such an oscillatory
behavior.

The proposition is proved using equation (12). For instance, the bound (22) for
va = Opy,(va)v is proved in the same way as (15), with L2-norms replaced by L ones,
using (16) to estimate the right hand side. In the same way, one defines v4o4 as the cut-off
of v close to +2A. As in the proof of (14), one shows an O (hz~%) bound for Z¥uy-.,
which implies that the main contribution to Qo (v, ) is Qo(va,a). Localizing (12) close
to £2A, one gets an elliptic equation that allows to determine vi24 as a quadratic function
of vp, Up. Iterating the argument, one gets the expansion of the proposition. One does not
get in the v/h-terms of the expansion a contribution associated to 0A because Qo(V') may
be factored out by a Fourier multiplier vanishing on the zero section. Consequently, non
oscillating terms form part of the O(h'™*) remainder.

Let us use the result of the preceding proposition to obtain an ODE satisfied by v:
PROPOSITION. — The function v satisfies an ODE of the form
Dy = %(1 — x(h=Pz))|dw|” v — iVR(1 — x(hPz)) [q>2(;c)v2 + @,Z(x)@ﬂ
(24) +h(1 — x(hPz)) [q>3(x)v3 + By (2)|v)*v + Dy (z) v + <I>_3(:c)173]

+ O(eh**t"),

where k > 0, 8 > 0 are small, g are real valued functions of © defined on R* and x is in C§° (R),
equal to one close to zero.

To prove the proposition, one plugs expansion (20) in equation (11). The key point is to
use (22), (23) to express all (pseudo-)differential terms from multiplication operators and
remainders. For instance, if b(£) is some symbol, one may write b(§) = b|ea + e, where
e¢ vanishes on /A = {¢ = ¢dw}. Consequently

Opy, (b)vea = b(Ldw)vep + Opy,(€p)vea,
and by (22), when £ = —2,1,2, one gets ||Opj, (er)vea || = O(eh'~%). Since Qo (va, Ta) is
made of expressions of type

S = Opy,(bo)[(Opy, (b1)va)(Opy, (b2)va)]
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(and similar ones replacing vy by U4), one gets, using that v% is Lagrangian along 2A,
S =bg (2dw)b1 (dw)b2 (dw)v% + O~ (hlf‘st’) ) .

One applies a similar procedure to the other pseudo-differential terms of equation (11),
namely Op, (z€ + | |1/ ) and Co(V'), where v is expressed using (20) in which the vy
are written as explicit quadratic or cubic forms in (va, U ). This permits to write all those
terms as polynomial expressions in (v, U4 ) with z-depending coefficients, up to a remainder
vanishing like h'+* when h goes to zero. Expressing back v, from v, one gets the ODE (24).

As soon as the preceding proposition has been established, the proof of optimal L*°-esti-
mates for v is straightforward. Applying a Poincaré normal forms method to (24), one is
reduced to an equivalent ODE of the form

2
Duf = 50— xth P21+ Bl 2]+ o1,

This implies that ;| f|2 is integrable in time, whence a uniform bound for f and explicit
asymptotics when ¢ goes to infinity. Expressing v in terms of f, and writing u(¢, z) = %v(t, z/t),
one obtains the uniform O(t~'/2) bound for u given in (A) as well as the asymptotics of the
statement of the main theorem. Estimates for Z*u are proved in the same way.

1. Statement of the main result

We have already written in the introduction the water waves equations under the form
of the Craig-Sulem-Zakharov system (3). We shall give here the precise definition of the
Dirichlet-Neuman operator that is used in that system, and state some of its properties that
are used in the rest of this paper, as well as in the companion paper [5]. Theses properties, that
are essentially well known, are proved in that reference. Once the Dirichlet-Neuman operator
has been properly defined, we give the precise statement of our global existence result. Next,
we explain the strategy of proof, which relies on a bootstrap argument on some a priori L?
and L* estimates. The L? bounds are proved in the companion paper [5]. The L> ones, that
represent the main novelty of our method, are established in Sections 2 to 6 of the present

paper.
1.1. Dirichlet-Neumann operator
Let n: R — R be a smooth enough function and consider the open set
Q:={(z,y) eRxR;y <nlz)}

If ¢p: R — R is another function, and if we call ¢: Q — R the unique solution of A¢ = 0
in €2 satisfying ¢[,—, ) = ¥ and a convenient vanishing condition at y — —oo, one defines
the Dirichlet-Neumann operator G(n) by

Gy = V14 (921)? OnPly=n,

where 0, is the outward normal derivative on 92, so that

G = (9y0)(x, n(x)) — (821)(029) (z,1(x)).

In this subsection, we recall the estimates obtained in [5] for G(n).
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One may reduce the problem to the negative half-space through the change of coordinates
(z,y) — (2,2 = y — n(x)), which sends Q on {(z,2) € R?; 2 < 0}. Then ¢(z,y) solves
A¢ = 0if and only if ¢(z, 2) = ¢(z, z + n(z)) is a solution of Py = 0 in z < 0, where

(1.1) P=(1+n"?)02+092-290,0. —n"0,
(we denote by ' the derivative d,7n). The boundary condition becomes ¢(z,0) = v (z) and
G(n) is given by
Gy = [(1+n0)00 —n'0:0] | -
It is convenient and natural to try to solve the boundary value problem

Pe=0, ¢l.=0=1%
when 9 lies in homogeneous Sobolev spaces. Let us introduce them and fix some notation.
We denote by ’_(R) (resp. J;(R)) the quotient space ' (R)/C[X] (resp. ' (R)/C). If
JR) (resp. J,(R)) is the subspace of J(R) made of the functions orthogonal to any

polynomial (resp. to the constants), J._(R) (resp. J; (R)) is the dual of J__ (R) (resp. J; (R)).
Since the Fourier transform realizes an isomorphism from _ (R) (resp. J, (R)) to

Joo(R) = {u € J(R); u™(0) = 0 for any k in N}

(resp. 31 (R) = {u € J(R); u(0) = 0}), we get by duality that the Fourier transform defines
an isomorphism from . _(R) to (JOO(R))’ , which is the quotient of ' (R) by the subspace
of distributions supported in {0} (resp. from J; (R) to ((Z’ L(R)) = J'(R)/Vect (69)).

Let ¢: R — R be a function defining a Littlewood-Paley decomposition and set for j € Z,
A; = ¢(277D). Then for any u in J._(R), the series > jez Aju converges to u in J(R)
(for the weak-x topology associated to the natural topology on J_ (R)). Let us recall (an
extension of) the usual definition of homogeneous Sobolev or Holder spaces.

DEFINITION 1.1. — Let §', s be real numbers. One denotes by H*"*(R) (resp. C%'*(R)) the
space of elements u in J.._(R) such that there is a sequence (c;) jez in £2(Z) (resp. a constant
C > 0) with for any j in Z,

1A ]z < ;277 3+

(resp.
18ull o < C2795795%)

where j4 = max(j,0). We set H¢ (resp. C%') when s = 0.

The series Z;;og A ju always converges in J'(R) under the preceding assumptions, but the
2o Aju. Ifwis in H*(R) with s’ < 1/2 (resp. in C*+*(R) with
s’ < 0), then Zj_:lfoo Aju converges normally in L, so in J'(R), and u — 7% Aju
gives the unique dilation and translation invariant realization of H** (resp. CS"S(R)) asa
subspace of J'(R). One the other hand, if s’ € [1/2,3/2[ (resp. s’ € [0, 1[), the space H*'(R)
(resp. C*'(R)) admits no translation commuting realization as a subspace of J'(R), but the
mapu — Zfz A ju defines a dilation and translation commuting realization of these spaces
as subspaces of ¢} (R). We refer to Bourdaud [12] for these properties.

same is not true for )
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Recall also that if s is in R (resp. 7 is in R — N), the usual Sobolev space H*(R) (resp.
the space C”(R)) is defined as the space of elements v of ' (R) satisfying, for any j in N,
|Ajullre < ¢;279% (resp. ||Ajullpe < C277%) for some ¢?(N)-sequence (c;); (resp. some
constant C), and x(D)u € L2 (resp. x(D)u € L) for some C§°(R)-function x equal to
one on a large enough neighborhood of zero. Moreover, if v is in N, we denote by C"(R)
the space of v times continuously differentiable functions, which are bounded as well as their
derivatives (endowed with the natural norms).

The main result about the Dirichlet-Neumann operator that we shall use in that paper is
the following proposition, which is proved in the companion paper [5] (see Corollary 1.1.8.):

PROPOSITION 1.2. — Let 7y be a real number, v > 2,v & %N. There is some 6 > 0 such
that, for any n in L?> N C"(R) satisfying ||n'||cv-1 + ||77'||1C/,21 ||n’||}ﬁ1 < 8, one may define
for i in HY/2(R) the Dirichlet-Neumann operator G(n) as a bounded operator from H'/?(R)

to H=Y/2(R) that satisfies an estimate
(1.2) Gl -7z < C(IIn ler-2) [I1Da]* ] -

In particular, if we define G j3(n) = | Dy| 3 G(n), we obtain a bounded operator from H'/?(R)
to L?(R) satisfying

1
(1.3) 1G12(m ]| 2 < O llov-1) ||| Dal? 9| -
Moreover, when 1 is in Cz7~2 (R), G(n) satisfies
(1.4) IGM) Pl g1 < C I llom-1)[[1Dal? 9| o3+
where C(-) is a non decreasing continuous function of its argument.
1-26’ 26’

If we assume moreover that for some 0 < ' < 6 < %
1
|D.|” 2% G(n) satisfies

(1.5) 11D "% G|l -3 -0 < O [l g 1D ¥l o

7]’||H_1 ||77’HC_1 is bounded, then

1.2. Global existence result

The goal of this paper is to prove global existence of small solutions with decaying Cauchy
data of the Craig-Sulem-Zakharov system. We thus look for a couple of real valued func-
tions (7, 1) defined on R x R satisfying for ¢ > 1 the system

5t77 = G(TI)T/J»
1. 1
O +n+ i(aﬂ/’) B ENCED)

with Cauchy data small enough in a convenient space.

1.6
( ) (G(WW + 3w773w¢)2 =0,

The operator G(n) in (1.6) being defined as in the preceding subsection, we set, for
7, smooth enough and small enough functions

G 8210
(1.7) B(n)y = (q)f(g 7;)72 L.

Before stating our global existence result, let us recall a known local existence theorem
(see [64, 50, 4]).
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PROPOSITION 1.3. — Let 7y be in]7/2,+00[ \ 3N, s € N with s > 2y — 1/2. There are
80 >0, T > 1 such that for any couple (no, o) in H*(R) x Hz"(R) satisfying

21 1
(1.8) Yo — Thmoysoo € HP*(R), Inoll e + [|1D2]% tho| -3 < b0,

Equation (1.6) with Cauchy data n|i=1 = no, ¥|i=1 = Yo has a unique solution (n, ) which is
continuous on [1,T| with values in

(1.9) {{0) € H(R) x H3(R); % — Tppym € HE(R) |
Moreover, if the data are O(g) on the indicated spaces, then T > c/e.

REMARKS. — The assumption ¢y € H2-7 implies that 1 is in C773 so that Proposi-
tion 1.2 shows that G(ng)o whence B(ng)o is in C7~1 C L. Consequently, by the
first half of (1.8), |Dz|é 1 1s in Hs"2 C C"" 2 as our assumption on s implies that
s > v+ 1/2. This gives sense to the second assumption (1.8).

— As already mentioned in the introduction, the difficulty in the analysis of Equa-
tion (1.6) is that writing energy inequalities on the function (7, | D, |% 1) makes appear
an apparent loss of half a derivative. A way to circumvent that difficulty is to bound
the energy not of (7, |Dx|% ), but of (5, |Dz|% w), where w is the “good unknown”
of Alinhac, defined by w = 1 — Tg(y)yn (see Subsection 2 of the introduction).
This explains why the regularity assumption (1.8) on the Cauchy data concerns
%o — T'B(no ), Mo and not vy itself. Notice that this function is in H2¢ while g itself,
written from o = wy + T(ye)y, Mo 18 only in H?25=3 because of the H S-regularity
of MNo.

- By (1.4)if ¢ isin Cz7=2 and nis in C7, G(n)¢ is in C7~1, so B(n)y is also in C7~!
with | B(n)¢|gy-1 < C(||77/||CW71)|||Dx|% w”cw—%' In particular, as a paraproduct

with an L*°-function acts on any Holder space,

1212 Togyunll ooy < CUM ller=1) Il 10212 %)) oy -
This shows that for ||n||,, small enough, ¢ — ¢ — Tg(,))y7 is an isomorphism from
C2773 to itself. In particular, if we are given a small enough w in H 28 C Q20 ,
we may find a unique ¥ in C27~z such that w = 1 — T(n)yn- In other words,
when interested only in C7~2-estimates for |DI|% w, we may as well establish them

on |Dw|% @ instead, as soon as ||7|| - stays small enough.

Let us state now our main result.
We fix real numbers s, s1, sg satisfying, for some large enough numbers a and v with
v & %N and a > v, the following conditions

(1.10) S,80,51 €N, s—aZslzsozg—i—'y.

THEOREM 1.4. — There is g > 0 such that for any ¢ € 10,e0], any couple of func-
tions (no, Vo) satisfying for any integer p < s;

(x8,)Pn0 € HP(R), (28,)P¢o € H2* P~ 3(R),

(1.11) o
(02)P (Y0 = TB(noywo0) € H2*7P(R),
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and such that the norm of the above functions in the indicated spaces is smaller than 1,
Equation (1.6) with the Cauchy data n|i—1 = eno, ¥|t=1 = &0 has a unique solution (n,)
which is defined and continuous on [1, +oo[ with values in the set (1.9).

1
Moreover, u = |D,|? v + in admits the following asymptotic expansion as t goes to +00:

There is a continuous function a: R — C, depending of € but bounded uniformly in e, such
that

. . 92 2
(1.12) u(t,z) = %g(%) exp<4|;t/t| + zB% Ioigf/ﬁgl log(t)> et T p(t, z)

where & is some positive number and p is a function uniformly bounded for t > 1, € € |0, &¢].

REMARK. — If the integers s,s1,so are large enough, we shall see in Section 6 that
a(z/t) vanishes when x /¢ goes to zero at an order that increases with these integers. Because
of that, we see that the singularity of the phase at z/¢ = 0 is quite irrelevant: for |z/¢| small
enough, the first term in the expansion is not larger than the remainder.

1.3. Strategy of the proof

The proof of the main theorem relies on the simultaneous propagation through a boot-
strap of L® and L2-estimates. We state here these two results. The first one is proved in the
companion paper [5]. The proof of the second one is the bulk of the present paper. We show
below how these two results together imply Theorem 1.4.

The main point will be to prove L? and L>-estimates for the action of the vector field
(1.13) Z = t0 + 220,

on the unknown in Equation (1.6). We introduce the following notation:

We assume given v, s, a, So, s1 satisfying (1.10). For (n, ¥) a local smooth enough solution
of (1.6), we set w = 1 — Tp(y)yn and for any integer k < sy,

k
(1.14) M® ) =3 (12700t, )| gy + I1D2]? ZP0(t, )| 4o-)-

p=0
In the same way, for p a positive number (that will be larger than sg), we set for k& < sq,

k
(1.15) N @) =D (12700, )| gomn + [1Do]7 2798 )| s )-
p=0
By local existence theory, for any given Ty > 1, there is ; > 0 such that if ¢ < g,
Equation (1.6) has a solution for ¢t € [1,Tp]. Moreover, assumptions (1.11) remain valid
att = Ty (see Proposition A.4.2 in the companion paper [5]). Consequently, it is enough
to prove Theorem 1.4 with Cauchy data at ¢t = Tg.

The L? estimates that we need are given by the following theorem, that is proved in the
companion paper [5] (see Theorem 1.2.2. of that paper).
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THEOREM 1.5. — There is a constant By > 0 such that Ms(sl)(To) < iBgs, and for any
constants Bo, > 0, Bl > 0 there is g such that the following holds: Let T > Ty be a
number such that Equation (1.6) with Cauchy data satisfying (1.11) has a solution satisfying
the regularity properties of Proposition 1.3 on [Ty, T| X R and such that

(i) For any t € [Ty, T|, and any € € 10, ¢,

(1.16) 11Dz1? % (t, )| ey + 0t v < Booet ™2
(i) For any t € [Ty, T, any € € |0, &g

(1.17) NGO () < Boget™ 54827,

Then, there is an increasing sequence (O )o<k<s,, depending only on B._ and € with 65, < 1/32
such that for any t in [Ty, T, any € in |0,&¢], any k < s1,

(1.18) M®) (1) < %Bgsték.

REMARK. — We do not get for the L2-quantities MF) (t) a uniform estimate when
t — 4o00. Actually, the form of the principal term in the expansion (1.12) shows that the
action of a Z-vector field on it generates a log(¢)-loss, so that one cannot expect (1.18) to
hold true with §; = 0. For similar reasons, one could not expect that Np(so)(t) in (1.17)
be O(t~1/?) when t — +o00. Such an estimate can be true only if no Z-derivative acts on the
solution, as in (1.16).

Let us write down next the L°°-estimates.

THEOREM 1.6. — Let T > Ty be a number such that the equation (1.6) with Cauchy
data satisfying (1.11) has a solution on [Ty, T[ x R satisfying the regularity properties of
Proposition 1.3. Assume that, for some constant By > 0, for any t € [Ty, T|, any € in ]0,1],
any k < s1,

M®) (t) < Byetox,

1.19
- NED(1) < Ve <1

Then there are constants B, BL, > 0 depending only on By and some €}, € )0, 1], independent
of Ba, such that, for any t in [Ty, T[, any € in |0, &g,

1 2/
NGO (t) < SBooet™ 3+ Boe
(1.20) 2

1 1 _1
|||l)310|2 w(t’ ')chfé + ||77(t7 ')“CW §Boogt é

IN

We deduce from the above results the global existence statements in Theorem 1.7.

Proof of Theorem 1.4. — We take for B; the constant given by Theorem 1.5. Then Theo-
rem 1.6 provides constants B, > 0, B/ > 0, and given these B, B, Theorem 1.5 brings
a small positive number £9. We denote by T}, the supremum of those T' > Ty such that a
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solution exists over the interval [T, T'[, satisfies over this interval the regularity conditions
of Proposition 1.3 and the estimates

M®) (t) < Baet®*  fork < s1,
(1.21) N () < Boet™ 3+ B

D2 1% (2, )| ey + 10t Vg < Booet ™%
We have T, > Ty: By the choice of B; in the statement of Theorem 1.5, the first estimate
(1.21) holds at ¢ = Tp with By replaced by By /2. If B, is chosen from the start large
enough, we may as well assume that at ¢ = Ty, the second and third inequalities in (1.21)
hold with B, replaced by By, /2. Consequently, the local existence results of Appendix A.4
in the companion paper [5] show that a solution exists on some interval [T, Tp + [, and will
satisfy (1.21) on that interval if § is small enough.

If T, < 400, and if we take €9 small enough so that B+/ep < 1, we see that (1.21)
implies that assumptions (1.16), (1.17), and (1.19) of Theorem 1.5 and 1.6 are satisfied.
Consequently, (1.18) and (1.20) hold on the interval [Tp, 7%, i.e., (1.21) is true on this interval
with By (resp. Boo) replaced by By /2 (resp. B, /2). This contradicts the maximality of 7.
So T, = +oo and the solution is global. We postpone the proof of (1.12) to the end of
Section 6. O

The rest of this paper will be devoted to the proof of Theorem 1.6. Theorem 1.5 is proved
in the companion paper [5].

2. Classes of Lagrangian distributions

We denote by h a semi-classical parameter belonging to 0, 1]. If (z,£) — m(x,§) is an
order function from T*R to C, as defined in Appendix , and if @ is a symbol in the class .S(m)
of Definition A.1, we set, for (uy), any family of elements of J'(R)

e Op(@yun = 5 [ eala, e, W) (€) de.

It turns out that we shall need extensions of this definition to more general classes of symbols.
On the one hand, we notice that if a is a continuous function such that |a(z, £, h)| < m(z,§)
and if u is in L2(R), (2.1) is still meaningful.

We shall also use a formula of type (2.1) when the symbol a is defined only on a subset
of T*R. Denote by 71 : (z,£) — z and my: (x,€) — £ the two projections. For F' a closed
subset of T*R, and r > 0, we set

F.={(z,§) e T"R; d((z,§),F) <r}
where d is the Euclidean distance.

DEFINITION 2.1. — Let m be an order function onT*R, F a closed non empty subset of T*R
such that mo (F) is compact. We denote by S(m, F) the space of functions (z,§, h) — a(x, &, h),
defined on F., x 10, 1] for some ro > 0, and satisfying for any ., B in N, any (z,€) in F,,, any h
in]0,1],

8;‘8?(1(1‘, §> h) < Cocﬁm(l‘a é)
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We define next the notion of a family of functions microlocally supported close to a
subset F as above.

DEFINITION 2.2. — (i) Let p be in [1,+oc]. We denote by E% the space of families of
L? functions (vy)y, indexed by h € )0, 1], defined on R with values in C such that for any N
in N, there is Cy > 0 with |||, < CNhYN for any h in]0,1].

(ii) Let F be a closed non empty subset of T*R such that 7o (F) is compact. We denote by E,
the space of families of functions (vp)p of LP(R) satisfying

— There are Ny in N, Co > 0 and for any h in]0,1), |lvp]|;, < Coh™No.

— Foranyr > r' > 0, there is an element ¢ of S(1) supported in F,., equal to one on F,/
such that (Opy, (¢)vy — vp )y belongs to EY,. We say that (vy,)p, is microlocally supported
close to F.

REMARKS. — Notice that Definition 2.2 is non empty only if there exists at least one
function ¢ in S(1) supported in F,., equal to one on F,.. This holds if F' is not “too
wild” when |z| goes to infinity, for instance if F' is compact, or if F = 7, ! (K) for some
compact subset K of R. In the sequel, we shall always implicitly assume that such a
property holds for the closed subsets in which are microlocally supported the different
classes of distributions we shall define.

— It follows from Theorem A.2 of Appendix that the last condition in Definition 2.2 will
hold for any element ¢ of S(1), supported in F,., equal to one on F,...

We may define the action of operators associated to symbols belonging to the class S(1, F)
on functions microlocally supported close to F', modulo elements of EL. Let us notice first
that if @ is in S(1) and is supported in a domain {(z, &, h); |¢| < C} for some C > 0, then
(2.1) defines an operator bounded on L?(R) for any p, uniformly in A. It follows then from
the theorem of symbolic calculus A.2 of Appendix that, if a is in S(1, F), if ¢ is in S(1)
supported in F, N ()¢, for some 0 < 7' < r < 1, then (Opy,(ad)vy)y is in E for any
(vn)p in ER.. We may thus state:

DEFINITION 2.3. — Let F be a closed set as in Definition 2.2, a be an element of S(1, F).
For (vy,)p, in E%,, we define

(2.2) Op;,(a)vy, = Opy,(ag)v,

where the right-hand side is defined by (2.1) and where ¢ is in S(1), supported in F, x ]0,1]
Sor small enough v > 0 and equal to one on F,. x ]0,1], for some ' € |0,7|. The definition is
independent of the choice of ¢ modulo E%, so that Opy, () is well defined from E%, | EY, to itself.

Let K be a compact subset of T*R, K; = 71(K) and let w be a real valued function
defined on an open neighborhood U of K. Denote by ., the canonical transformation
Xo: TU —T*U
(2,8) = (z,§ — dw(z)).
Set K’ = ., (K).

4¢ SERIE - TOME 48 —2015-N° 5



GLOBAL SOLUTIONS FOR TWO-DIMENSIONAL GRAVITY WATER WAVE 1167

LEmMMA 2.4. — (i) Letabein S(1, K'). Thereis asymbolbin S(1, K) such that for any (vi)n
in B, we may write

(23) @/ 0p,(a) (e ,) = Opy(a 0 xu(®,)vn + h Opy (b

modulo EY.
(i) If (vp)p is in E%, then (e‘iw(””)/hvh)h is in EY,.

Proof. — We shall prove both assertions at the same time. Remark first that since
(Qvp, — wp)p is in EL if 0 is in C§°(U) equal to one on a neighborhood of K;, we may
always assume that vy, is compactly supported in U. By symbolic calculus, and the assump-
tion a € S(1,K’), we may also assume that a is compactly supported and that the first
projection of the support is contained in U. Consequently, we may replace in (2.3) w by a
C§°(R) function, equal to the given phase in a neighborhood of K.

We compute

24) e Opy (a) (e Py ) = o [ ei*cla, he, W) de
I8
with
c(z, & h) = ﬁ / e =@ mw@=v/hg(g, ¢ —n, h) dy dn
Y
2.5) | |
= oo [ al, g~ = 0t ) dy dn

where 6(z,y) = W Let  be a smooth function supported in a small neighborhood
of zero in R and equal to one close to zero. We insert under the last oscillatory integral in (2.5)
a factor k(y)x(n). The error introduced in that way is a symbol in A% S((£)~°). The action
of the associated operator on vy, gives an element of E%. We have reduced ourselves to
1

21th
The argument of a belongs to K. if (z,¢) is in K, with v < r and the support of x has
been taken small enough. Moreover, it is given by (z,£ — dw(z) + O(y) + O(n)), so that an
integration by parts shows that (2.6) may be written a oy, + hb for some symbol bin S(1, K).
This gives (i).

(2.6) e~V ha(z, € —n — 0(z,y), h)k(y)K(n) dy dn.

To check (ii) we apply (2.4) with a = ¢ an element of S(1) supported in K. ;X 10, 1], equal
to one on K/, x ]0,1] for some 0 < 7} < r(,. We assume that ||Op;, (¢)vy, — vi|| ., = O(h™)
for some ¢ inlS(l) supported in K, X ]0,1], ¢ =1 on K, x]0,1] withr; < rg < r{. Then
if (z,€) is in K, and Supp « has been taken small enough in (2.6), we see that this integral

is equal to
—iyn/h du d
h / (n) dy dn,

which is equal to one modulo O(h*). We conclude from (2.4) where we replaced vy,
by Opy, (¢)vy, modulo O(h*°) and from symbolic calculus that

Heiw/h Oph(qﬁl)(e_i”/hvh) _ vh“Lp — O(hoo)’

which is the wanted conclusion. O
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Lagrangian distributions. — We consider A a Lagrangian submanifold of 7*(R\ {0}) that is,
since we are in a one-dimensional setting, a smooth curve of 7*(R \ {0}). We shall assume
that

A= {(z,dw()); w e R'}

for w a smooth function from R* to R. We want to define semi-classical Lagrangian distri-
butions on A, i.e., distributions generalizing families of oscillating functions (8(z)e™ ®)/?),,.
Since in our applications w will be homogeneous of degree —1, so will have a singularity at
zero, we shall define in a first step these distributions above a compact subset of R \ {0}. In
a second step, the Lagrangian distributions along A will be defined as sums of conveniently
rescaled Lagrangian distributions on a compact set.

For technical reasons, we shall perform below dyadic decompositions. When rescaling
our functions using the parameter of these dyadic decompositions, we shall make appear,
in addition to the given Planck constant h, an auxiliary Planck constant #, defined from A
by rescaling. Consequently, we fix o, 5 two small positive numbers and consider two Planck
constants h and £ satisfying the inequalities

(2.7) 0<Cy'h'P < h< Coh” < 1

for some constant Cy > 0. Notice that these inequalities imply that O(%°°) remainders will
be also O(h*°) remainders.

DEFINITION 2.5. — Let F be a closed nonempty subset of T*R such that wo(F) is compact.
Letv,ubeinR, v e Ry, pel,400]

(1) One denotes by h¥ @Z”Y[F] the space of elements (vp,)y, of E%./EY,, indexed by h and
depending on h, such that there is C > 0 and for any h, h in 10, 1] satisfying (2.7)

h N+% h —2y
(2.8) lvgll 1, < CHY (h) (1 + h) .

We denote
h By = r By,
F

where the union is taken over all closed non empty subsets F of T*R such that wo(F') is compact.

(i) Let K be a compact subset of T*(R\{0}) such that KN A # @. Denote by e an equation
of A defined on a neighborhood of K. One denotes by h” LPI\"" K] (resp. h* LP J\""[K]) the
subspace of h¥ %Z’V[K] made of those families of functions (vy,)y, such that there is C > 0 and
for any h, h in0,1] satisfying (2.7), one has the inequality

h l«H‘% h —2v N
2.9 Oms(eole < cn ()7 (1+2)  [wh ]
respectively, the inequality
h P«‘f‘% h -2y
(2.10) |Ops(e)vsl, < Ch” <h> <1 + h) h.
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Notice that by definition A LP Ji"7[ K] is included in A LP I}"¥[K]. If € is another equation
of A close to K, we may write € = ae for some symbol a € S(1, K) on a neighborhood of K.
By Theorem A.2, Op;(é) = Opy(a) Opp(e) + i Op;(b) for another symbol b in S(1, K).
Consequently (2.8) and (2.9) imply that the same estimate holds with e replaced by €, so that
the space h” LPI}"7 K] depends only on A. The same holds for ¥ LP J§"7 [K]. In particular,
because of our definition of A, we may take e(z,£) = £ — dw(z).

EXAMPLE 2.6. — Let 0 be in C°(R \ {0}) and set vy(z) = 6(x)e™ /" Then (vp)s
is in L®°JYO[K] for any compact subset of T*(R \ {0}) meeting A such that Suppf C
m1(K). Actually (vg); is microlocally supported close to K and Lemma 2.4 shows that
Op;, (€ — dw(x))vy, satisfies estimate (2.10) with p = oo, v = p = v = 0. Notice that in
this example, one could apply Op;, (¢ —dw(z)) several times to vy, and gain at each step one
factor i in the L*° estimates. It turns out that the Lagrangian distributions we shall have to
cope with will not satisfy such a strong statement, but only estimates of type (2.9) or (2.10).

PROPOSITION 2.7. — Let p € [1,400], p,v in R, and let K be a compact subset of
T*(R\ {0}) with AN K # @.

(i) Letabein S(1, K) and (vy,)p, an element of LPI\"Y (K. Then ((Opg(a) — a(z,dw(z))vs),
is in (h'/? + ) B, [K).

Assume we are given a vector field Z = a(h,x)Dy + B(h, ) D, satisfying the following
conditions. If one makes the vector field Z act on the variable h, one gets | Zh|| ;o = O(h),
and if e is a symbol in S(1,K) (resp. that vanishes on A), then [Z,0py(e)] = Opy(€)
for some other symbol é in S(1,K) (resp. that vanishes on A). Assume also that for some
integer k, Z¥ vy, is in LPIV7 (K] for 0 < k' < k. Then Z* Opy(a)vy, is in LPIY" K] and
Z*[(Opy(a) — a(z,dw))vs] is in (h*/* + h) By [K].

(ii) Denote by Ao the zero section of T*R. Let (vy)p, be in LPIVV[K]. Then (e=*/Mup)p
is LPINY[Ko] where Ko = xu(K). Conversely, if (vi)n is in LPIN[Ko], (e*/Mvy)y is
in LPIN7 K.

(iil) Let A1, Ao be two Lagrangian submanifolds of T*(R\ {0}) satisfying the same assump-
tions as A, let K1, Ko be compact subsets of T*(R \ {0}) with Ay N K1 # @, Ao N Ky # &.
Set

A+ As = {(2,& +&); (2,61) € A1, (2,62) € Az }
and define in the same way K, + Ka. Let py,ps be in [1,00] with p% + p% = ;1), W1y 1425 Y1, Y2
in R with py + pe = p, v1 + 72 = 7. Let (vé) be in LWIKj’W[Kg] for £ = 1,2. Then
(’U% . ’U%)h isin LPIK;1A2 [Kl + Kg]
A similar statement holds for the classes LP J3"" [K] and B, [K].

Proof. — (i) We may always modify w outside a neighborhood of ;1 (K) so that it is
compactly supported, and this will modify the quantities at hand only by an element of E%,.
We may find a symbol b in S(1, K) so that

a(l‘, f) - CL(.’E, dw(m)) = b(.’E, g)(& - dW(l‘))
in K, for some small r. By the symbolic calculus of Appendix ,

Op,(a)vy — a(z,dw)vy, = Opy,(b) Opp (€ — dw(z))vr + R Opy(c)vy
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for a new symbol e in S(1, K). The conclusion follows from estimate (2.9).

If we make a vector field Z act as in the statement on the last equality and use the
commutation assumptions, we obtain the last statement of (i).

(ii) We have seen in Lemma 2.4 that (e=*/"vy,), is in Ef,_/EY,. Since Opy, (€)(e ™™/ vy) =
e~ /" Op, (¢ — dw(x))vp, we deduce the statement from (2.9).

(iii) Denote by wy,ws two smooth functions, that may be assumed to be compactly sup-
ported close to 71 (K), m1(K2) respectively, such that A, = {(z,dwe(z))} close to Ky,
¢ = 1,2. Then w = w; + wy parametrizes A = A; + As close to K7 + Ks. We define
wl = e /Myl By (ii), (wh) is in LPeIN Y [Ky o], where Koo = Xu,(K¢). Writing a
product from the convolution of the Fourier transforms of the factors, we see that (w}w?)y,
is in Ef(m +Kao! E?. Let us check that w}jw} satisfies estimate (2.9) when e is an equation
of Ay, i.e., e(z, &) = £ so that Opy,(e) = AD,. We write

1hDa(wrwi)| o < [ADewpl| oy (W3]l o + 0 2o [PD2w0R]| 1
and use (2.8), (2.9) for each factor to get that (wjwj)p is in LPIN"[K1 o + Ka,0]. We just

have to apply again (ii) to v, = e™/"(w}w?) to get the conclusion. The proof is similar for

classes LP.J}"" [K] and B, [K]. O

We have defined, up to now, classes of Lagrangian distributions microlocally supported
close to a compact set of the phase space. We introduce next classes of Lagrangian distribu-
tions that do not obey such a localization property.

From now on, we consider phase functions w: R\ {0} — R which are smooth, non zero,
and positively homogeneous of degree —1. We set
(2.11) A={(z,dw(x)); z e R\ {0}} cT*(R\ {0})

so that A is invariant under the action of R*. on T*(R\ {0}) given by A - (z, &) = (Az, A™2¢).
For h €10, 1], C a positive constant, we introduce the notations

J(h,C) = {j €Z; 0 1h2(1-9) < 9i < Ch—2ﬁ} :
(2.12) hj = h279/2if j € J(h,C),

Jo(h,C) =min(J(h,C)) -1, j1(h,C)=max(J(h,C))+ 1.
We note that (2.7) is satisfied by i = h; if j € J(h,C) (for a constant C = C3). For j € Z,
v a distribution on R, we set

Ojv = 11(2]/2-),
so that in particular, if p € [1,00], ||@;||Z,(LP,LP) = 279/P) If q belongs to the class of
symbols S(m) and if a;(z, &) = a(279/2x,27¢) we notice that for j € J(h,C)
(2.13) 0, 0p,(a)© = Op,, (a ).
We fix a function ¢ in C$°(R9) such that Z ©(277¢) = 1. We define
jez
-1

wo(€) = > @(277¢), Al =0p,(p(277¢)) = p(277hD).

j=—00
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DEFINITION 2.8. — Letv € R, p € [1,00], b € R. One denotes by h”%f, the space of
Sfamilies of LP-functions (vy)y, such that there is C > 0 and

Aoy ||,, < Coh279+Y  for j > jo(h,C)

(2.14) _
0D (00 (27" E) v, < CY,

where j;. = max(j,0).
Clearly the definition is independent of the choice of (.

DEFINITION 2.9. — Let A be a Lagrangian submanifold of form (2.11), K a compact subset
of T* (R\{0}) meeting A. Letv, pbeinR, v € Ry, F aclosed non empty subset of T*R such that
mo(F) is compact in R. One denotes by h* LP It [K] (resp. h” LP J47 K], resp. h” @;W [F]) the
space of families of functions (vi)pejo,1) such that

— Forany j € J(h,C), there is a family (’Uflj)hj, indexed by
1 jo 1 .
hy € |0,min (G5~ 7275, Cf 2775 )|

which is an element of h* LPI\"[K] (resp. k" LPJ\V[K], resp. h* By [F]) with the
constants in (2.8), (2.9), (2.10) uniform in j € J(h, C).
= Forany h €10,1], vn = 32 .0 @;vflj.

One defines h” %ﬁﬁ =Uhn @Zﬁ [F'| where the union is taken over the sets F which are closed
with o (F') compact in R.

REMARK 2.10. — The interval of variation imposed to h; in the preceding definition is
the one deduced from (2.7) with i = h;.

— The building blocks (U{Lj)hj in the above definition are defined modulo O(h$°) so
modulo O(h™) since h; < h?. Since the cardinal of J(h, C) is O(|log h|), we see that

the classes introduced in the above definition are well defined modulo O(h*).
~ 0,
— It follows from the above two definitions that h” %’p - h”%f,. Moreover, by (2.14) and
the fact that the cardinal of Z_ N {j > jo(h,C)} is O(|log h|), we see that if u, v are
in 2, with b > 0, then uv is in A=ORY = (Nyo o h ™0 Ko

Let us prove a statement similar to (i) of Proposition 2.7 for elements of the classes of
distributions we just defined.

PROPOSITION 2.11. — We assume that the function w defining A satisfies either w(z) # 0
forallz € R* or w = 0. In the first (resp. second) case we denote by K a compact subset
of T*(R\{0})\ 0 (resp. of T*(R\{0})) such that KNA # @. Let py € R,y € Ry, p € [1, 0],
k € N be given. Consider a function (z,£) — a(x,&) smooth on R* x R* (resp. R* x R)
satisfying for some real numbers £, 0, d,d’ (resp. £,£',d > 0,d >0) andall o, 3 in N

(2.15) 020 alz,€)| < Caglal'* (@)" |¢1*-7 ()"

when (z,£) € R* x R* (resp. (2.15) when 8 < d and
(2.16) 020a(z,£) =0 for B> d,
when (z,£) € R* x R).
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Denote Z = —hDy, + xD,, and let (vy)y, satisfy for any k' < k, (Z¥vy)n € LPIVY[K]
(resp. @Z’V[K]). Then (Z*(Opy,(a)vp))n belongs to LPIVTK] (resp. Q;Z V[ K]) where
fi=p+2d—0—0 7=y-% —d.

Moreover, under the assumption (Z* vy,)), € LPIVY[K], if x is in C§°(R), is equal to one
close to zero, and has small enough support, Z*((1—x)(xh=?)a(z, dw)vy) is also in LPTV7 K]
and

(2.17) Z* [Opy,(a)v, — (1 — X)(xh_ﬁ)a(x,dw)vh]

belongs to h'/? @MW[ K]+ h@uilﬁ[K]
If we assume that (Z* vy,)p, is in L J%[K] for k' < k, we obtain instead that (Z* Oph( )UR)h
and (Z*(1 = x)(zh=P)a(z, dw)vy)n belong to LP JV[K) and that (2.17) is in h@ [ ]-
When w = 0, if ZF vy, is in @H [K], we obtain that (Z* Opy,(a)vy)n is in Qgp [ ]
The same results hold if we quantize a by Op,,(a)* instead of Opy,(a), i.e., under the same
assumptions as above (Z* Op,,(@)* (vn,)) belongs to LP I [K] and
(2.18) [Oph( Yo — (1= x)(zh™P)a (z,dw)vy]
belongs to the same spaces as indicated above after (2.17). In the same way, when w = 0, and
when (Z* vp,)p, is in @Z’W[K],for k' <k, (Z¥(Op,(@)*vn))p is in Q?ZW[K].

Proof. — According to Definition 2.9, we represent v, = >_.c y(n.0) @;vij where (v{;j n,
is a bounded sequence of elements of LPIK"7[K], as well as (Z’“'vhj)hj for ¥ < k. By (2.13)
and (2.15),

(2.19) Opy(a)vn = >, Ofwj,

FE€J(h,C)

with 'wfh = Opy, (aj)”{” and
(0,€) = a (27972, 976) = 2/ (- ) (145)y 0 g

When (z, ) stays in a compact subset of 7*(R \ {0}) \ 0, (2.15) shows that 8;’8?@ =0(1)
uniformly in j. In the same way when (z, ) stays in a compact subset of 7*(R \ {0}), (2.15)
for § < d and (2.16) show also that 8§8§bj = O(1) uniformly in j. Since 2/ = (h/h;)?,
it follows from Theorem A.2 of the appendix that (w{bj) n; 1s a bounded sequence indexed

by j € J(h,C) of elements of LPI%"7[K]. Moreover, the vector field Z satisfies for any
symbol e

[Z,Opy,, (€)] = Opy,, ((Dz — 26D¢)e) .
Since either A = {(z, dw(z))} withw homogeneous of degree —1 or A = {(z, 0) }, we see that
(xDy — 2¢D¢)e vanishes on A if e does. Consequently, the assumption of the last statement
in (i) of Proposition 2.7 is satisfied and we conclude that (Z wflj ), is a bounded sequence of

elements of L”IK’J[K].
To prove (2.17), we use that again by (i) of Proposition 2.7,

wflj = aj(x,dw)vflj + <h1/2 + hj) )
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where (rfbj)hj is a bounded sequence indexed by j € J(h,C) of elements of %ﬁ’:’[K ], that
stay in that space if one applies Z K (k" < k) on them. Let x be as in the statement of the
proposition, with small enough support. Then, if z is close to m (K ) and j is in J(h, C),
(1 — x)(279/22h=P) = 1. Consequently, since (vh )n,» as well as (Z¥ vh )n; is microlocal-
ized close to K, we may write vhj = vhj (1 — x)(277/22h=%) modulo a remainder which is
O(h3°) = O(h™) in L?, as well as its Z K _derivatives, 0 < k' < k. Integrating such a remain-
der in the 7";” contributions, we may write, using that d w is homogeneous of degree —2,

wfw = (1—x)@277?zh")a (2_7/2:1:, dw(2_j/2$)) e S+ hrh

where (rf1 )n, is as above and rh = 279/%7] , is such that (z¥ rh )h, is in @Z_l’:y[K]
for k' < k This gives (2.17) if we plug this expans10n in (2.19).

To check that (Z*((1 — x)(zh~?)a(z,dw)vy)), is also in LPT{V[K], we write the func-
tion on which Z* acts as

> 65 [0, dw(@ /%) (1 - x) (@27 h Py |
J€T(h,C)

and remark that, as above, the assumptions of microlocal localization of (v{;j )n,; allow one to
remove the cut-off (1 — ) up to O(h*°) remainders. Since d w is homogeneous of degree —2,

a(279 %z, dw(279/%)) = O <2j(d_‘€2ﬂ)+ﬂ‘+ (d’+g>>

when x stays in a compact subset of R*, so that the above sum defines an element
of LPI* VK],

The statement of the proposition concerning the case when (Z* vy,)y, is in LPJ[K] is
proved similarly, as well as the one about @Zﬁ [K].

Finally, the statements concerning Op,, (a)* instead of Opy,(a) are proved in the same
way: one may write (2.19) with wflj given by Op h(afj)*v,ﬂj . By Theorem A.2 in the appendix,
we know that there is a symbol b, in S(1,K) uniformly in j, such that
Opy, (@j)* = Opy, (b;). Moreover, bj(z, ) = a;j(z,§) + hjcj(z, ) for some other symbol c;
in S(1, K) umformly in j. The statements concerning Op,, (@)* vy, thus follow from those we
just proved for Opy, (a)vp,. O

Let us study products.

PROPOSITION 2.12. — Let p1,pa,p be in [1,+00] with 2= + -1 = 1, y1,7 in R, A1, Ao
be two Lagrangian submanifolds of T* (R \ {0}) of the form (2.11), defined in terms of phase
functions wy,ws homogeneous of degree —1, wi #Z 0, wy Z 0. Let K1, Ko be two compact
subsets of T*(R \ {0}) with Ky N Ay # @, £ = 1,2. Let (v})y, be an element ofﬁ Ml[ K]
(resp. LWI"ﬁ’W [K), resp. LPt J“j’w [Ke]) £=1,2.

There is a compact subset K of T*(R \ {0}) with K N (A1 + Ag) # @ such that (v} - v3)p
belongs to @ZW[K] (resp. LPTY A, K, resp. LPJA1+A2[ 1) with p = pa1 + pe, v = 71 + 7.
Moreover, for any neighborhood Q of A1 + Ao, any compact subset L of R \ {0}, there are
neighborhoods Qg of Ny, £ = 1,2, such that if K, C Qp N 71'1_1(L), £=1,2, then K C Q.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1174 T. ALAZARD AND J.-M. DELORT

Proof. — By Definition 2.9, we may write for £ = 1,2,

UfL — Z @ ,Je

je€J(h,C)
where (Ufﬁﬂ )n,, is @ bounded sequence of LP¢ T3+ [K,]. We write
(2.20) vvi= Y, O wl
J1€J(h,C)
with
.21) wp =t Y 65, v
j2€J(h,C)

Because of the microlocal localization properties of (vf;]”) h;, We may replace, up to an
£

O(h*) remainder in L%, (v ’“) , by (6vh’“ )n;, Where 8isin C3° (R) and is equal to one on a
large enough compact subset of ]R* This shows that in (2.21), we may limit the summation to
those js such that |jo—j1| < Cp for some large enough Cy, up to remainders which are O (h*)

in L?. Define
~1,51 __ § 2,2
Uhjl - 9]2 J h]2
j2€J(h,C)
[71—32|<Co

Then (fuh’“)h].1 is a bounded sequence of B> K] (resp. LP2I4> K], resp. LP2 J4272[Ky))
for some large enough compact subset Ky of T*(R \ {0}), as follows from (2.13) and the

homogeneity properties of Ao. We just need to apply (iii) of Proposition 2.7 to conclude that
(wy. )n,, is a bounded sequence of elements of BLVKy + Ko (resp. LPINT, , [K1 + Ko,
resp. L"J[’\"”ﬁrA2 (K1 + Ka)).

The last statement of the proposition follows from the fact that K = K; + K, and that

K, may be taken in an arbitrary neighborhood of A, if K is contained in an even smaller
neighborhood of that submanifold. O

PROPOSITION 2.13. — Let Fy, F5 be closed subsets of T*R such that wo(Fy) is compact,
¢ = 1,2 Let (vf) be in %ZW[FA with e > 0,y > pg. Then v} - v? isin h=9 B [F) with
u = p1+pe forany 0 > 0 and some closed subset F' of T*R whose second projection is compact.

Proof. — We write (2.20)

1 2 _ E * 1 2 * 02
/Uh * Uh —_— ®j1whj1 + @]2w

j1€J(h,C) j2€J(h,C)
with
1 _ L § 2,52
whh _Uhh 9]2 —J1 th
j2€J(h,C)
J2<J1

and a symmetric expression for w,%j . Then w,le is microlocally supported in some closed
2 1
subset of T*R, whose £ projection is compact, as

Opy,, (5) |07, 5,772 | = 3,07
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if ¢ is supported for |£] < C, equal to one on [¢| < C/2, for some C > 0. The L*°-norm
of wflm is bounded from above by

9d1m1/2—=j14+7 Z 9dap2/29=ja+7 < C| 10gh|2j1/~t/2—j1+7,
j2€J(h,C)
Jj2<J1

since pg > 0,7 > /2. O

3. The semi-classical water waves equation

Let us recall an equivalent form of the water waves equation that is obtained in the
companion paper [5] (see Corollary 4.3.13. in that paper). If (n, %) is a solution of the water
waves equation, if Z denotes the collection of vector fields Z = (Z, 9,,) and if we assume that
u = |Dz|% 1 + in satisfies for £ smaller than some integer sg, for @ > 0 large enough and
deN,

ZRu(t,- L < 400, Z*u(t, - L <+
[;E{I;]II u(t, )| asa < +00 [;}){l;]ll u(t, )| gara < 00

on an interval [Ty, T'], we may write, using the notation % = (u,w),
(3.1) Dyu = |Dy|? u+ Qo) + Co(U) + Ro(%),
where Qo (%) denotes the quadratic part of the nonlinearity

Go(1) = 1D (D2 1D} (w4 @) + (1D} (w @)’
(3.2)

2

+ 1100 (=) 1Dal (u+ @) = D2 (@ = D)Da D2l (w4 1),

Co(%) stands for the cubic contribution

Go(10) = ¢ 1Dl* [(1D]* (u+ @) 1Del (u—5) Dot (ut )]
- - % 1Dl [(1D2f* (ut-a) ((u— ) |f?m|g (utm)]

— 5 1D: [(u =) 1D, ((w =) IDa|* (u+ )]

+ % | D.| [(u—ﬂf D, (u+ﬂ)] + 11—6 1D, |? [(u—a)2|Dz|% (u+a)]

and where %0(%) is a remainder, vanishing at least at order 4 at % = 0, which satisfies
for k < sg the following estimates

3
G4 DA R W) < Celal - 30 TINZ5ul a2l
ki+-+ka<k j=1
k1,k2,k3<ks
with a constant Cy[u] depending only on [|Z*~1+ || casa and, if 6 > 0 is small enough,

4
(3.5) 125 1Dal 2" Bo() ]| < Okl > TTIZ% 0l e

ki tha <k j=1
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where Cy[u] depends only on ||Z(k_1)+u||cd+a and on a bound on ||u||1L;29l ||u||2Li; for some
6’ €10,0[.

We make the change of variables t = t/, z = ¢/’ and set h = t'~1, u(t, ) = h'/?v(t',2),
so that )

Dyu=h¥ [(Dt/ — &'hDy)v + %hv].

The vector field Z = t0; + 2x0, becomes Z = t'0y + x'9,.. We deduce from (3.1) the
following equation for v, in which we write (¢, ) instead of (¢, z), since we shall not go back
to the old coordinates

(3.6) (D — Op, (=€ +[€]2))v = VRQo(V) + h[—%v + CO(V)] +hERY(V)

where V = (v, 9),

Qu(V) = — = Op,(I€1) [ (Opi(elel H)(w + )" + (Opy (el ) (v + )]
4
~ 1 0Pu (&) (v~ 0) Op, (EEl~*) (v + ),
Co(V) = £ Op(1613) [ (O (1613 ) (v +9)) O, (1) (0 2) Op, (Ie]* ) (v +9))]
1

8
(3.7) + 2 0p4 (IED) (v — ) Op,, (I€]F) (v + 7))
Co (V) stands for the cubic contribution
(3.8)
— 5 0m, (Il [(Oma (Ie1*) @+ ) (0~ ) Oy, (Ie1F )0 +7)]
— 5 0P (1€ (v = 8) Opa (€D (v = 9) Op, (Ig]* ) (v + )

+ 2 Opa (18D) [0 — 97 Oy (1) v + 9)]

+ 2 0py (IEP) [(0 = 97 Oy (1) + 9)]

and where the remainder satisfies for p = 2 or co and a small positive number 6, for any
d € N, k € N such that ||(hDg)*+2Z"v(t,-)|| ,, and ||(hDy)* T2 Z"v(t,-)||, .. are finite, the
estimate

(3.9) |(hD.)*Z" |hD,| "2 RE(V)|,,

2
<Gilolhs 3 [[IleDe) 25 V|| [hDo) 25V,

ki+ko+ks<k j=1
k1,k2<ks

where Cj;[v] depends on
W5 || (hD,) 25D
and on a uniform bound for ||v||1L§29/ e’ ||v||2Lgo;.

Actually (3.6), (3.7), (3.8) follow from (3.1), (3.2), (3.3). The remainder, estimated by (3.4)
and (3.5), being at least quartic, would bring in factor a power 73/2 in (3.6). We retained only
the power h'1/8 to keep the extra h'/16 factor in the right hand side of (3.9), and to keep
also a h'/16_factor in front of one of the ||ij”||cd+a in the right hand side of (3.4), (3.5). In
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that way, we obtain in (3.9) an estimate in terms of cubic expressions, modulo the indicated
multiplicative constant. Notice also that the uniform bound assumed for ||v|| ;- 120" o’ ||U||iio
will be satisfied, when 6" > 0 will have been fixed. Actually, we shall obtain a uniform control
of ||v|| ., and a bound of ||v(¢,-)|| 2 in O(t°) for some § > 0 as small as we want. Taking
this § smaller than 6’ will provide the wanted uniformity. Finally, notice also that the fact
that order zero pseudo-differential operators are not L°°-bounded is harmless in deriving

(3.9) with p = co from (3.5), as we may always replace o by some larger value.

Our main task in the following subsections will be to deduce from Equation (3.6)
the oscillatory behavior of v when h goes to zero. We shall do that expressing v from
Lagrangian distributions as those defined in the preceding section. This structure will be
uncovered writing from (3.26) an equation for v involving only D, derivatives. Actually, since
D; = —ihZ — Op,(x), we may write

(3.10)  Op,(20€ + |¢]?)v = WQO(V)Jrh[ v —iZV — Co(V )} — WY RR(V).

From nom on, we consider v(t, -) as a family of functions of x indexed by h = t=1 € ]0, 1].
We do not write explicitly the parameter £, i.e., we write v instead of (v, ). Let us introduce
the Lagrangian submanifold given by the zero set of the symbol in the left hand side of (3.10)
outside £ = 0, i.e., set

3.11) {a:§ ) e T*(R\ {0}); 2m§+|§|%:0’§?§0}
. = {(z,dw(z)); z € R*}
where
1
w(x):m,

In Section 6, we shall need the exact expressions of Qo (V'), Co(V') given by (3.7), (3.8). Before
that, we shall use only some less precise informations on the structure of these terms that we
describe now.

From now on, we denote by Z the collection of vector fields Z = (Z, hd,) and, if v is a
distribution on R, we define for any natural integer &k the vector valued function

Zkv — (Zk1 (ham)k2v)k1+k2§k-

LEmMA 3.1. — Letp bein [1,+00].

(1) Denote by By the symmetric bilinear form associated to the quadratic form Qq. Let k be
in N*, andfor every couple (k1,ka) € N x N with ki + ke = k, take py,, px, in [1,+00] such

that pi too = %. Then for any distributions Vi = (v1,01), Vo = (v, U2), any jo, j1,j2 in Z,
1
h ~k h h jo+ % min (41,5
”AjDZ By (AJ& Vi, AjQVQ) ||Lp < 020t G J2)1max(j17j2)2j0—c
3.12 ki Ah ka A B
1 DI Ay A P A A

k1+k2<k
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Jfor some positive constant C. In the same way
10 (o (h720=70¢)) 27 By (A, Vi, A}, Va)
< Ch2(1=0)93 min(j1,j2)

||Lp

(3.13)
ki AR k2 A h
DD AN NALY PN Ay ALY o
k1+ko=k
(i) Let Ty be the trilinear symmetric form associated to Cy. Then for any k € N, for some
constant C,
h ok h h h
||Aon To (Ajl Vi, Aj2 Va, A]‘3 ‘/3)
< (C'2d0/2+2max(j1,j2,48) 7

||Lp

(3.14) max(j1,j2,3) 2jo—C
x> 12 ALV e, 127 AT Va | o, 127 A5, Va |
ki+ka+k3<k
wherei—}—i i:%.
In particular, for any d in R, any p in [1,+00], any o > 2
| AL Z T (Vi V2, VB)||,
2
(3.15) < C9i/2—itd Z HHZkg<th>a+dw”Loo szg (th>oz+dV3”Lp.
ki+ko+ks<k (=1
k1,k2<ks

If, in the left hand side, one replaces A" by Opy, (g0 (h=2(1=9)€)), the same estimates hold
with the factor 2/2=3+% in the right hand side replaced by h*~°.
(iii) The remainder Rl (V') satisfies for any d € Ry, any j inZ, with2? > ch* =) estimates

18325 R (V)]

2
(3.16) < Ci/2—ivd Z H||Zkz<th>a+dVHLoo||Zk3<th>a+dV||L2
k1+ko+k3z<k (=1
k1,k2<ks
and
3
(3.17) |ARZFRE(V)||, . < C27275+d N T 125 (kDo) V||,

ki+ko+k3<k (=1
where C' depends only on h1/16H <th>a+dZ(k_1)+VHLw for some large enough o > 0.
If, in the left hand‘side‘ of (3.16), (3.17), A} is replaced by Opy, (o (h=201=9)¢)), similar
estimates hold with 27/%>=3+¢ replaced by h*—°.

Proof. — (i) Consider the contribution to By(V7, Va) of the first term in the right hand
side of (3.7). Its Fourier transform may be written as the symmetrization of a multiple of

h|2 . .

W [ (e mn e = all) e -
(hl€ —ml)= (hIn[2)

where fi = vy + U1, fo = vs + vU2. On the support of the integrand, (¢ — n)n > 0 so that

€] = |€ — nl + |n|. Consequently, the contribution of this term to A By (A" V3, A% V5)

will be non zero only when jo > max(j1,j2) — C for some C' > 0. In the same way, the
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contribution to By(Vi, V) of the sum of the last two terms in (3.7) may be written, after
Fourier transform and up to symmetries, as a multiple of

hd / &l =& 2 ¢ o Fatm) dn.
Uik

On the support of the integrand &n < 0, whence | — | > max(|¢],|n|) so that the

contribution to
h h h
Ajo By (Ajl Vi, Ajz ‘/2)
will be non zero only if jo < j; + C for some C > 0. Using these inequalities and taking into

account the distribution of the derivatives on the different factors, we conclude that

I8 [ALBo(AL A, AL W), < Gt mG AL V|, (AL Ve

0 1 ||LP J1 ||Li”1 2 ||LP2

if p% + p% = %. Moreover, by spectral localization, we have always max(j1,72) > jo — C
for some C' > 0. If one makes Z* act on By(V1, V), the above properties of spectral local-
ization are not affected since, if a(£) is smooth outside zero, [Z, Op;,(a)] = —2 Op, (£a’(€)).
Distributing the Z-derivatives on the different factors, one gets (3.12). The proof of (3.13) is
similar.

(if) We notice first that in all contributions in (3.8), Op,(|¢ |%) is always in factor. This
allows to make the 27°/2-factor appear in (3.14). Since the sum of the powers of |£| appearing
in each term of (3.8) is equal to 5/2, we get as well the factor 22™2x(j1.72,33) in (3.14). The cut-
off for max(j1, j2, j3) > jo — C follows from the spectral localization of each factor. Finally,
making Z* act on T} and commuting each vector field with Op,, (|¢] 3), Op, (¢ |§|_%), ... We
obtain (3.14).

To deduce (3.15) from (3.14), we decompose in the left hand side of (3.15),

Vo = Op(po(O))Ve+ Y ALV,
je>0

Because of the spectral localization, we get for j, > 0,

1255, Vel < €270 S| ZM D) Vi
ky<kg
125 Opnlgo)Vell o < € 3 (125 (hD2) Vi,

ky <k
We plug these estimates in (3.14) with py, = pg, = 00, pr; = p and in the similar inequality
where some A;‘Z V4 is replaced by Op,, (o) V. We obtain a bound given by the product of the
sum in the right hand side of (3.15) multiplied by
C92i/2 Z 92 max(j1,jz2,j3) = (f1+j2+js)(a+d)

max(ji1,j2,j3)>5—C
Je>0

Since o > 2, this is bounded by C'27/2-7+% as wanted. The analogous statement, when Alis
replaced by Opy, (w0 (h~2(1=9)€)) in the left hand side of (3.15) is obtained in the same way.

(ii1) Inequalities (3.16), (3.17) follow from (3.9) with p = 2 or p = oo, using that the loss
2799 < ¢h=20(1-9) i5 absorbed by the extra h'/16 factor in the right hand side of (3.9), if
0 has been taken small enough. O
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Let us introduce the following decomposition of a solution v of (3.6). Fix o, 8 some small
positive numbers, ¢q in C§°(R) the function equal to one close to zero introduced before
Definition 2.7. We decompose the solution v of (3.6) as

v=vg +w+ vy,

(3.19) vr, = Opy, (o (K21 7)€)w,

v = Opy, ((1 = @o) (h7€))w.
We notice that if C is a large enough constant, w = v — vy — vy may be written
ZjeJ(h,C) A?w.

PROPOSITION 3.2. — Assume that for some k € N, some a > b+ % + % + a, some
positive constants 0y, 6}, Ag, A}, a solution v of (3.6) satisfies for any h in an interval 1h', 1],

with b’ € )0, 1] given, the a priori L*>-bounds
Gag 1002 < eArh 7,
' |ArZF||,, < eAgh™0% 270+ for27 > O~ A=)

and the a priori L*°-bounds
|0y (o (R~20=7€)) 24|, .. < e AL ™%,

(3.21) . o :
|alz < eAphT%27It for 21 > ¢71p*(0),

UHLOO
Then, if 0, are small enough, one gets that

(3.22) h Sy =h"% (v +vg) belongs to an e-neighborhood of 0 in Rl;o,

with the notation introduced in Definition 2.8. Moreover, w = v — v satisfies

(3.23) (D¢ — Opy, (z€ + |§|%))w = VhQo(W) + h {—%w + CO(W)} + hiRy(V)

where Z kRO(V) belongs to %ZO, and is in an e-neighborhood of zero in that space.
Notice, for further reference, that as we did for (3.10), we deduce from (3.23)

(3.24) Opy, (2z€ + |§|%)w = —VhQo(W) + h[%w —iZw — CO(W)] — hiRy(V).
The proposition will be proved using the following lemma.

LEMMA 3.3. — (i) Assume that estimates (3.20), (3.21) hold. Then if a > b + % + %

a>b+a+1+%,b>a>2,
3

HOph (SDO (h_2(1_0)§))2kQ0(V)HLm < cpe’hi,

(3.25) B
A% 0p, (1 = 0) (7€) Z*Qo(V)| . < cxe®hi23+ for any

and

(3.26) 10p4 (0o (h=20=7€)) Z*Co(V) | .. < cre®ht,

||A;L Op,((1— goo)(hmf))Z’“C’o(V)HL00 < cx3hE27+Y  for any j,

if 0k, 6}, in (3.21) are small enough and cy, is a convenient constant.
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(i1) Assume (3.20) and the same inequalities on a, b as above. Then if 0y, 8, are small enough
[0p4 (0 (n20720)) %0 .. < exehio ™,
(3.27) | A" Opy, (1 — o) (h?7€)) Z¥0]| .. < creh¥279+Y  for any j,
127 A5 Opy (100 (R 77¢) ) 2
Moreover, if we assume (3.20) and (3.21),

(3.28) ||Opy, (o (h7207€)) Z*[Qo(V) = Qo(W)]||

3
v||Loo < ckehg_””é(l_"), ?>0.

+ sup 24| ALZF[Qo(V) — Qo(W)]|| o < cre?hd
ijO(h,C)
and
(3.29) ||Opy, (w0 (A72177€)) 2% [Co(V) — Co(W)] | ;e
+ sup 2j+bHA?Zk [Co(V) = Co(W)] HLOO < credhi.

J2jo(h,C)

Proof. — (i) To obtain the first formula in (3.25) we use (3.13) with py, = pg, = p = 0.
Using assumption (3.21) we get a bound of the left hand side by
C€2A;€2h—25;+2(1—a) Z 93 min(j1,j2) —j14+b—ja+b
J1,J2€Z
which gives the conclusion since o € ]0,1/2[ and we take ¢;, small enough. To get the second

inequality (3.25) we use (3.12) with pg, = px, = p = 00, and we estimate the L°*° norms in
the right hand side using Sobolev injection and (3.20). We obtain

CE2A%h_25k2j Z 2%min(jl,jz)—j1+a—j2+a+%+j72h_1‘
max(j1,j2)>j—C
If one uses that by assumption 2/ > ch =27, and the fact that @ > b+ 5 + 4, one gets the
wanted estimate (for d; small enough).
To obtain (3.26), one substitutes inside (3.15) with p = oo, d = 0,
Vi = Opy, (00 (B 207206 ) Ve + ) AF Opy, (1 = 90) (h20770€))V,
Je€Z
one uses (3.21) to estimate two of the three factors of the right hand side, (3.20) and Sobolev
injection to bound the third one, and one makes similar computations as above, exploiting

that for the left hand side of the second estimate (3.26) not to vanish, it is necessary that one
of the j, be larger than j — C, and the assumptions on a.

(i1) Inequalities (3.27) follow from (3.20) and Sobolev injections, using the assumptions
on g and the fact that d;, < 1/16.

We estimate the contribution to (3.28) corresponding to j € J(h,C). We write
Qo(V) — Qo(W) from Bo(V — W, V) and By(V — W, W). By (3.12), || ALZ*Bo(V = W, W), .
is smaller than

j 1 min(jy,j2 k k
co Y > 2RO ZEAL (V- W] |2 ALV

max(ji1,j2)>j—C
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By the definition of w = v — vy — vy, A" (V — W) is non zero only if 271 < h2(1=7)
or 27t > h=% In the first case, we bound || Z*A" (V — W)||,..27+/* using the third

3c0

inequality (3.27) with £ = 1/4. We get a bound in O(ahg_T). In the second case
|25 Ak (V-W)]| . isO (eh5277+1) by the second estimate (3.27). Using assumption (3.21)
to estimate || Z*A" V|| . , we get a bound
Ce2hs 0= 9 ZZ 9% min(j1,j2)— §i1- 9~ (J1++i2+)b < Ce20=i+ (- p§—8i—50
max(j1,j2)>j—C

Since 2/ < Ch~28 with 8 < 1 and o < 1, §, < 1, we obtain the wanted conclusion.

One studies in the same way the contributions of indices j in J(h, C) to (3.29), expressing
Co(V) — Co(W) from To(V — W, V, V) and from similar expressions and using (3.15).

To estimate the first term in the left hand side of (3.28), (3.29), or the contribution of
j = ji(h,C) to the latter, we just need to apply (3.25), (3.26), and to notice that these
inequalities remain true with V replaced by W. O

Proof of Proposition 3.2. — Notice first that (3.22) follows from (3.27) if ¢ < 1. Denote
Yp = Id — Opy, (po(h720790¢)) — Op,, ((1 — o) (h?P¢)) so that w = v by definition
and v = (Id — Xp,)v. We notice that [Dt — Opy, (:vf + |£|é), Eh] = h3,, where 3, may be
written as a linear combination of quantities Op,, (g (h=21=9)¢)), Op,, (o (h?5¢€)) for new
functions @y in C§° (R*). We deduce from (3.6)

(D¢ — Opy (£ + [€]2))u = VA(Id — £1)Qo(V)
+ h(Id — %) (—% + CO(V))
+ ks (Id— Sp)RIHV)
— hSpv.

By estimates (3.25), (3.26) and (3.27) the first, second and last terms of the right hand side
may be written h*/4R(V) with R(V) in ®., .
To estimate the remainder term RJ(V), we estimate its L> norm using (3.17) with
d=b+ % The factors in the right hand side of (3.17) are estimated in the following way:
[{hD2)= 2V | < CJ|Opy (0o (h2H 7)) V| e

+C Z ||2”(°‘+”+%)A§‘V||Lw
jEJ(h,C)

oL
. I\ 2
+o > 9i(a+b+3) <2h> ARV,
3271 (h,C)

where we used the Sobolev injection for the last term. Using assumptions (3.21) and (3.20)
for the right hand side, together with the fact that 2/ < Ch~2% on the first sum, 2/ > ch=2#
on thelastone,anda > a+b+1+ %, we bound this quantity by say Ch~ 21 (if &, d;., B are
small enough). It follows that

(D¢ — Opy, (€ + |§|%))w =VhQo(V) +h —%v + CO(V)} +hiR(V)
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with R(V) in %io Using (3.27), (3.28), (3.29) we may replace the right-hand side of this
equation by the right hand side of (3.23) up to a modification of R(V'). If we make the
Z-family of vector fields act on (3.23), and use the commutation relations

[t0: + 28, Dy — Opy (2 + [€]*)] = —(Dy — Opy, (2 + [¢])),

(3.30) )
(O, Dy — Opy, (x€ + £]7)] =0,

we obtain in the same way the estimates involving Z* derivatives. O

4. Weak L° estimates

The goal of this subsection is to show that if v is a solution to Equation (3.6), and if we are
given an L?-control of Z¥+1y of type || Z*1v||,, = O(h™%+1) for some small 6511 > 0,
we can deduce from it and the equation an L-bound of the form || Z¥v||, .. = O(h™%)
for some small 6}, > dx1. Actually, we shall get as well bounds for (hD, )% instead of v for
some given b > 0.

These bounds are not good enough, but they will be the starting point of the more
elaborated reasoning that will be pursued in Sections 5 and 6. Before stating the main result,
we fix some notation.

Assume given integers s > N; > Ny > 1 and an increasing sequence of positive num-
bers (0x)o<k<s/2+N,+1- We consider another increasing sequence (0, )o<k<s+n, satisfying
the inequalities

¢ £ / 2
0< 0 <t<4 Stk <k,
0> Y 0+ > Ok if{ 7=
(4.1) =0 o1 kj <kwhen0<j </,
52 > 041 + 200 +456 ifk>1,

fork =0,..., 54 N. Clearly such a sequence (4, ), may always be constructed by induction,
and if §, is small enough, we may assume moreover that

1 S o 1 s
4.2 ) — k=0,...,= —<—k=0,...,= 4+ N;y.
( ) k<32 ) ,2 8<32 ; a2+ 1

We assume that the positive number § introduced in (2.12) is small enough so that
28(a + %) < %, where @ > 2 is the fixed large enough number introduced in (3.4) and
(3.15), and that 8 < o /2. We fix positive numbers a > b > b’ > b” such that

+ Ny + 1, 5;€<

3 1 1
a>b+-+—-+a, b>_
4.3) 2 B 2

B-v)B>2, (B -b)8>2
In that way, the assumptions of Proposition 3.2 will be fulfilled.
For k a nonnegative integer, we define

k

44 Eplv) = Z max(HOph(goo(h_Q(l_”)f))Zk,v |L°°’ sup 2j+b||A?Zk,v||Loo)
k'=0 Jj>30(h,C)
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and
k

45 Tu(w)= Y max([JOpa(po(h20-7€)) 2% o] o, sup  2|ALZF ], ).
J

k'=0 >jo(h,C)

Let k € N*. We denote by 7 the set of functions v — Py (v) satisfying for any v = (v3,)p,
with &x_1(v) < h~1/* a bound of type

46 IBOISClE@+ Y bu@bu@+ Y En0)EL0)Ek ).
k1+k2<k ki+ko+k3<k

In the same way, we define &, as the set of functions v — Py (v) admitting for any v = (vp)n
with &x_1(v) < h~'/* a bound of type

L V4 4
4.7 P <c > Y S [0 [ Thyenv)

1<0<4 ky+--+ko<k £/=0j=1 j=0'+1

The main result of this section is the following one.

PROPOSITION 4.1. — Let k be a positive integer. Assume that we are given constants Ay,
Ap, Ai,..., Agy1 and a solution v of (3.6) such that for h in some interval |h' 1]

(4.8) So(v) < Aph™%, T (v) <edAph ™, 0<K <k+1.

Then, there are hy > 0, A}, > 0, k' = 1,...,k, depending only on eAg, A, ..., Apy1 such
that for any h in |h', 1]

(4.9) Ew) <eAuh %, K =1,... k

REMARK 4.2. — The result of the preceding proposition may be thought of as a
“Klainerman-Sobolev” estimate, that allows one to get L>-decay from L?-bounds (there is
no decay involved in (4.9) since the negative power of time t~'/2 = v/h has been factored
out when we defined v from w).

The proof of the proposition will be made in three steps.

First, we treat the case of small or large frequencies, for which we deduce (4.9) from the
L2-estimate in (4.8) and Sobolev injection.

Next, we are reduced to intermediate frequencies, i.e., to A;‘v with j belonging to J(h, C).

We write the equation for A;‘v coming from (3.10). The operator of symbol 2z€ + |£ |% is
elliptic outside the Lagrangian A defined in (3.11). Since the right hand side of (3.10) is
O(Rh'/?7°), one will get for the L=-norm of A"Z*v cut-off outside a neighborhood of A
some O(h'/2=0) estimates, that are better than what we want.

In the last step, we decompose in the quadratic part Qo (V') of the right hand side of (3.10),
v as the sum of the contribution microlocalized outside A, which by the preceding step will
give an O(h'~?) contribution to (3.10), and a contribution microlocalized close to A. The
quadratic interactions between the latter will be microlocally supported close to 2 - A, 0 - A,
—2 - A where

XA = {(2,7); (z,6) € A}
Consequently, if we microlocalize (3.10) close to A, which does not meet £2 - A, 0 - A,
the v/h-terms of the right hand side disappear, and we get an O(h'~°) estimate for the
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L?-norm of the left hand side. This allows to deduce the wanted L>-estimate from a Sobolev
embedding, after reduction of A to the zero section, through a canonical transformation.

First step: Low and large frequencies. — We decompose v = vy, +w + vy according to (3.19).
By assumption (4.8), estimates (3.20) hold. Then (ii) of Lemma 3.3 implies that vy , v satisfy
the first two inequalities (3.27).

Second step. Elliptic estimates for w outside a neighborhood of A. — We define, for j € J(h, C)
with C large enough
w; = 0% Alw,
(4.10) ’ T s e
Z;=0",20% = (Z,2°hd,), Z§ = (Z"(27%h0:)" )iy +ks<is
sothatw =}, o) OFw;.

Let ® € C$°(R\ {0}) be equal to one on a domain C~! < [¢] < C for a large constant C
and let T be in C§°(R), with small enough support, equal to one close to zero. We define

(@, ) = BT (22€ + [¢]?),

7 (@, ) = B(€) (1 - T (226 + [¢]})).

We obtain two symbols of S(1, F) where F = {¢; C'~! < |£] < C'} for a large enough C’.
Moreover, since 22§ + |£ |1/ > = 01is an equation of A, we see that on the domain where

® =1, vy (resp. 7%) cuts off close to A (resp. outside a neighborhood of A). We shall prove
the following estimates.

@.11)

ProrosiTION 4.3. — Let k > 1, N € N. We denote by k some fixed small enough positive
number (say k = 1/24). There is a constant Cy, > 0, an element Py, of T\, such that for any v
satisfying &r—1(v) < h=Y1, one has for any j in J(h,C),

(4.12)
10ps, (Y0 Z5 sl

2
< Oy |[VR2U/3-3 05t N TT gy, (v)5 6, (v)

k1+ko<k{=1

+ 2070 N (T (0) Ty (1) B (0) + Gy () G, (V) By (0)]

k1+kotks<k
+ 2j/4_j+“h?/69k+1(v) + 27/6=dsbpltr p (v)

+ 2j/6fj+(b+§(a*b))h;\fgk(v)Z/?’ En (0)1/3]
where h=*~% means a bound in Coh=*%=° for any 6 > 0.

1 .
To prove the proposition, we need to estimate the action of Opy, (2z€ + €]2) on Z f w in
various spaces.

LemMA 4.4. — (i) Let k > 1. There are an element Py, of I, amatrix A(h;) with uniformly
bounded coefficients, a constant Cy, > 0 such that, for any v satisfying &p—1(v) < h=/16 when
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h stays in some interval W', 1], one gets for any h in that interval, any j in J(h,C),

|Ops, (22€ + [€]7) Zhw; — 2‘j/2\/ﬁA(h-)Z'?@* SAQW)|

< Cij/47j+(b+%) |: Z H T, (v 1/35k )2/3h170

(4.13)
k1tkotks<kf=1

+ W8Py (v) + h1_02_j/2gk+1(v)] .

(i1) Under the preceding assumptions, we get as well
(4.14)

0Py, (226 + [€*) Z5ws |,

< Oy | VR223/3—i+ (b+5(a=b) Z Hgkg )5 En, (v)3

k1+ko<k (=1

+hPOTIERTIT0 N T [Tk (0) T ks (0) g (0) + By (0) Eia (0) Gy (V)]

k1+ko+ks<k

+29/473 g0 (0) + 2j/6_j+bh1+“Pk(v)} :

(ii1) Under the preceding assumptions
|0y, (20 + [€]7) Z5w; — 279/ *VRA(h;) Z50% . AQe(W))| .
(4.15) < Cph! 02707 N 6y () Bk, (1) By (V)

ki+ko+k3<k
+ Ckth_j+bC;k+1(’U)

and

4.16)  ||2772VhA(R;) 2807 ;ALQo(W) || o < VR2THETE) 3" £y (1), (0).

ki1+ko<k

M

Proof. — We apply A;‘ to Equation (3.24). Denoting ﬁ? = ¢(277hD,,) for a new smooth
function ¢ satisfying Supp @ C Supp p, we get

Opy (20€ + [€]7) Alw = —VRAL Qo (W)
h [éAgw — iRl — iZ AN — AMCo(W))|
— hAAMR(V).
Applying ©7 ; and using (2.13), we get
Opy, (206 + |¢]7)w; = ~VR2 /20 A1 Qo(W)
(4.17) + hoir2 Qw] — iZw; — O, AL C(W)]
—2792p5/4e* ATR(V)
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where w; = w; — 20% jZ?w satisfies the same estimates as w;. We commute Z f to the
equation, using that

[2,0p,,, (20€ + €]2)] = — Opy,, (226 + [¢]?),
[27/2h8,, Opy,, (22 + [€]7)] = —2ih; (29/2hd,).
We get

4.18)
Opy, (206 + |€1) (Zhw;) = 277/2VRA(hy) 250, Al Qo(W)

+ b [E(hj)z;?@j + B(hy)Z5  w; + C(hy) 250 ;AL Co (W)
— hM*h;D(h;) 2507 ;AP RE(V)

where A(h;), B(h;), E(hj), C(h;), D(h;) are matrices with uniformly bounded coefficients.

Let us control the cubic terms in (4.18). We write Co(W') as To(W, W, W) as in (ii) of
Lemma 3.1. We express Zj©* ;A"Co(W) = ©* ,Z° AR Co(W) from ©* ;AL Z¥ Ty (W, W, W)
for k' < k (changing eventually the definition of the spectral cut-off A?) and decompose
each argument W as Zje AZW. Applying estimate (3.14) with px, = pr, = pr, = 6 and
writing ||| ;o < ||| 11| 7, we obtain
(4.19)

1A ZX ToW, W W[ o <022 30 3 22Oy ayzi-0

J1,J2,J3 k1+ke+ks <k’

1/3

3

: . /

< [TIz5af w2 agwi=
{=1

Loe”
Using (4.4), (4.5), we bound the last factor by

3
2—(j1++j2++j3+)[b+%(a—b)] H T, (W)1/36k£ (W)2/3
=1

Summing ji, j2, j3 in J(h, C), we obtain
’ 19— (b—24 1 (a— 1/3 £2/3
|ARZY Co(W)|| . < Cllog h[?29/2-3+ =25t N~ TT g /36203,
ki+ko+ks<k’ £

*

Remembering that ||©* ; ||Z’(L2,L2) = O(27/*) we conclude that the L?-norm of the cubic
term in the right hand side of (4.18) is bounded from above by the first term in the right hand
side of (4.13) (since a — b is large enough for § < 1, according to (4.3)).

To estimate the Ry-term in (4.18), we use (3.16). We notice first that the right hand side of
this inequality may be controlled from &y, (v), T, (v): actually

240DV <€ 3 [0 (06 255

Ky <ke

+ Y et abzi| |,
Jj2>jo(h,C)

where the constant C' depends only on A s || <th>a+dZ(k_1)+u||L°° )

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1188 T. ALAZARD AND J.-M. DELORT

We shall take d = b — a — 0, so that the bounds (4.4) imply that the j-series converges and
gives a bound

(4.20) |25 (hDg )TV ||, . < Cép,(v)|log hl.
Similarly, we get
(4.21) |25 (hDg )TV ||, < CT, (v)|log .

*

—J H #(L2,L2?) = O(2J/4)5

Plugging this in (3.16), we obtain, using again that ||@

WYy Zher  ARRE(V)||,, < OR¥/A-0R)/223/270s(bmam0) N g (5) B (0) T gy (v).
ki+ko+ks<k

We notice that since 29 = O(h=2#), we may bound 27+ (=2=0) by 9=i+(b+3) p=2(a+3+0)5,

For (3 small enough, this negative power of h will be compensated consuming an O(h'/8)-fac-

tor, so that we end up with a bound of the remainder in (4.18) by

ChY/82i/4=it b+ N g (1) 6y (V) T 1y (v)
ki+ka+ks<k
so by the Py-term in the right hand side of (4.13).

Finally, the linear terms in the right hand side of (4.18) are bounded by the last con-
tribution in (4.13), remembering that w; may be expressed from A;-Lw by (4.10) and that
e, HZ’(L2,L2) = O(27/*). This concludes the proof of (i) of the lemma.

(i) To prove (4.14), let us bound the L3-norm of the right hand side of (4.18). We express
first Z50* ,A"Qo(W) from ©% ;,AMZF Qo(W), k' <k, write Qo(W) = Bo(W, W),
decompose W = ij A?@W in each factor and apply (3.12) with p = 3, px, = px, = 6.
We get

1A Z¥ QW) <02 DT YT 2O g ysse
J1,J2€J(h,C) k1+k2 <K’

2/3

2
/
< [Tz af w2 afwis.
=1

Using (4.4), (4.5), we see that this quantity is smaller than
2
2y (H Tra(0)} En, (v)§>2—j+<b+é(a—b)).

kit+ka<k So=1

We thus get the first term in the right hand side of (4.14), using that ||© || 2(L5.19)
0(27/9).

Let us study next the L3-norm of the cubic term in (4.18). We proceed as in the proof
of (4.19), applying (3.14) with p = 3, px, = Pk, = 6, pr, = co. We obtain

AL ZY Co(W)]|,, < €29/ g2max(iigads)y
J 0 L = max(j1,j2,53)2j—C
J1,J2,J3 k1+ko+ks <k’

L2 L

2
/ / 3
 (TLIZ 8w 2 w22 ) 248, 0.
=1
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We bound the general term of this sum by

922 max(j1,j2,43) 9= 1+ +i2++73+)b

max(j1,j2,j3)>5—C
1/3

2/3
< (T 0T 1) (B () E(0)) " by (0).
As 29 < Ch=28, we conclude, using the convexity inequality a'/36%/3 < (a + 2b)/3
k/
185 2% Co(W)]] s
< CRP70 /270t N T [T (0) T ky (0) Bk (V) + By (V) Gy (1) i (V).
k1+ko+ks<k
This gives in (4.14) a contribution to the second term in the right hand side, using again that
e, ||Z’(L3,L3) is 0(27/°).
Consider next the remainder. We estimate || Z5©* ,A"R}(V)| ,, from
hy 0l Z5er ,ALRY (V)] .
using that the expression to be bounded is spectrally supported in a ball of radius O(hj_1 ). We
apply next estimate (3.16) together with (4.20), (4.21). Using that ||©* , | P = 0(2i/6),
we obtain that the L3-norm of the last term in (4.18) is bounded from above by
Ch1/470h?/622j/37j+d Z ({ﬂ)kl ('U)(SkQ ('U)gk3 (’U)
ki+ko+ks<k
with d = b—a — 0. We get finally as a coefficient 27/6-7+bp13/12-0-28(e+1/12) jf we yse again

that 27 = O(h~2%). If 3 is small enough, we see that the remainder in (4.18) contributes to
the last term in the right hand side of (4.14).

Finally, the contribution of the linear terms in (4.18) is bounded from above by
W25l + b 25wl s < OB (1250510 + 1125 s 10)
< CP/II ARG (v)

where we have used the Sobolev injection and the fact that Z?zﬂj, Z?ij is spectrally sup-
ported for h; [¢| ~ 1, and where the gain 27/* comes from ||©* || P17
from Aw in (4.10).

(iii) Let us prove (4.15) and (4.16). Applying (3.12) with p = pr, = pr, = o0, we get
fork' <k,

1a5 2% QoW €27 Y > 25RO z-c
§1,J2€J(h,C) k1+k2 <k’
<zt W, zo AL W),

which gives (4.16). To get (4.15), we use (4.18) again. The cubic term in the right hand side
of this expression is bounded using (3.14) with p = px, = pr, = P, = 0o and gives the first
term in the right hand side of (4.15). To estimate the L°>°-norm of the Ry-term in (4.18) we

use (3.17) with d = b—a—0 and (4.20). The loss 27+(2+0) < Ch=26(a+0) may be absorbed by
the extra h!/# factor in front of the remainder in (4.18), so that we get again a contribution

) when expressing w;
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bounded by the first term in the right hand side of (4.15). Finally, the linear term in (4.18) is
controlled by h;279+% & 1 (v). This concludes the proof. O

Proof of Proposition 4.3. — We apply Corollary A.3 with the weight m(z, £) = (z). By the
Definition (4.11) of 7%, 2z€ + € |1/ %2 > ¢(z) on the support of 75%. Consequently, for any N
in N, we may find symbols ¢ in S((z)~!),r in S(1) such that v§ = g # (2z€ + €M) + hr.
It follows that for any p > 1,

1
422) [0y, (VR)Z5ws|n < C||Opy, (2 + [€12) Z5w; |, + 15| Z5ws | -

Applying this with p = 3, we may bound by (4.14) the first term in the right hand side in
terms of the right hand side of (4.12). The last contribution is smaller than
N k N k 2/3 k 1/3
W1 Z5wil e < 1512505 12551
going back to the estimates of w; = ©* jA?w from &k (v), Fr(v), we obtain the last term in
the right hand side of (4.12). This concludes the proof of the proposition. O

The L3-estimate we obtained in Proposition 4.3 outside a microlocal neighborhood of A
will be useful as auxiliary bounds in the third step of our proof of Proposition 4.1. We also
need L*°-estimates for w cut-off outside A. They are given by the following

PROPOSITION 4.5. — Letk > 1. There is an element Py in I 5. such that for any v satisfying
6k_1(1)) < h71/16

(4.23) 125 Opy, (V&) w; || e < c[hm Pi(v) + h1/29’k+1(v)]2—j+b.
Proof. — We notice first the commutation relations
[tDt + wav Ophj (VZC\XI = Ophj (77\,1)7

[thwv Ophj (’Y/C\)] =h; Ophj (’Yzcm)v
where 7§ ; is in S(1) with support contained in Supp (73 ). This shows that, up to a modifi-

(4.24)

cation of the definition of 7§, it is enough to control ||Op,,, (v§)Z *w;]| , - Let us show
(4.25) 0Dy, (226 + [€12) Zhwy|,.. < C [h1/4Pk(v) + h1/29k+1(v)] 9=i+b

for some Py in I3 . This will imply (4.23) using (4.22) with p = oo and N large enough,
since h; = O(h?) and we may estimate HZ?ijLm < h;igk(wﬂ*j”’ by Sobolev. We

prove (4.25) estimating the L°°-norm of (4.18). We bound || Z*A"Qo(W)|| , .. using (3.12)
withp = py, = pr, = oo and ||Z¥ AL w]||, . = O(&k,(v)277¢+P). We obtain a bound
in 2979+b Py (v) for some Py in ', which gives a contribution to the first term in the right
hand side of (4.25), writing 27/2v/h = O(h'/*) as 2//2 < Ch=P. To bound the cubic term in
(4.18), we apply (3.15) with p = 0o, d = b—a —0, and (4.20), and control the loss 27+ (>+0) by
a small negative power of h using again 27 < Ch~28. We obtain that the cubic term in (4.18)
is O(hY/*Py(v)). The Ry term of (4.18) is estimated in the same way, using (3.17), (4.20).

Finally, we must bound the linear contributions in (4.18). Their L%-norms are
O(h2/* 0 F 11 (v))

according to the definition of &41(v) and the expression w; = ©F jA?w. Moreover,
they are spectrally localized at h;|{| ~ 1, so that by Sobolev injection, the L>-norms are
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bounded by the L2-norms multiplied by C hj_l/ ® This gives a contribution to the last term
in (4.25). O

Third step: Estimates on a microlocal neighborhood of A. — We have obtained in Propo-
sition 4.5 L*-estimates for Z fwj truncated outside a neighborhood of A. We want here
to prove similar L*°-estimates for Z?wj truncated close to A. They will be deduced from

L2-estimates for Opy, (2z€ + ¢ |%) Opy, (’YA).Z;;'LUJ' that follow from (4.18) truncated close
to A. Let us introduce the following decomposition of the function w = > 5, o) Ojw;
introduced in (3.19), (3.10): we define, using notation (4.11)

(4.26) wa= Y, ©;0p, (ya)w;
jeJ(h,C)

and denote W = (wp, wp). We shall prove

PROPOSITION 4.6. — Let k > 1. There are C > 0, an element Py, in I, such that for any v
satisfying F(v) = O(eh™%), Ex—1(v) < =18 for any j in J(h, C)

3
0Py, (7a) Zjwj | . <CATO [ Z H Ty (V)% e, (0)3
4.27) ky+ka+ks<k =1
+ h3 Py(v) + 5’k+1(v)} 27740,

To prove the proposition, we shall use (4.18) with Qo (W) replaced by Qo(w, ) in the right
hand side. Let us estimate the error that is done.

LeEmMA 4.7. — For any k € N, there are C > 0, an element Py, in I such that for any v
with &1 (v) < h=1/16

3
[ Z5A" (Qo(W) = Qo(Wa)) || . < CVR27+t S T T, (v)% 61, (v) 3

(4.28) k1dkothks<k =1
+ hi3279+0 Py (v).

Proof. — We have to bound for j in J(h, C),
| Z* AR Bo(W, W — Wa)| . + |

ZFANBo(Wa, W — W) .-

Consider for instance the first term. We decompose each argument using
w= Z A?ew = Z @L Wiy -
Je€J(h,C) Je€J(h,C)
By using (4.26),
w—wy= Y O 0p, (78)wj:
Je€J(h,C)
We write for j; € J(h,C),

|25 A%l < 177wl 125 A% ] .

1 1 1

(4.29) ) 1 1 2
< 9—J1+(b+3(a—b)) T, (0)3 6, (v) 3.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1192 T. ALAZARD AND J.-M. DELORT

Moreover Z kQA;g (w — wp) may be written as
Y. Z™A}6j0p, , (R)w;
J3 5 liz—321<No
for some large enough Ny, up to a remainder whose L2 norm is
O(hooz—jz+<b+%<a—b>> T, (0)3 60, (v)%),
This follows from the fact that

AL O3, Opy, (15)wyy = 63, 0py, (0(2%772¢)) Opy, (1)

and that v§ is supported for |£| ~ 1.

If we apply (4.12), we conclude that, since H632”2?(L3 L9 = 0(2792/9),

||Zk2Ah (w— wy ||L3 < Cy |:\/Ezj2/2]'2+(b+é(ab)) Z H gk/z 67@@ )%

k1 +k,<ky £=1

Hh2 IR0 N (T (0) Ty (0) Sy (V) + iy (V) By (V) By (V)]
(4.30) K, 4k 4k, <ks

+2 IR0 1 (v) + 279 PRI P (0)
42 J2+(b+5(a=b)) (hg + hoo) Tk, (U)% Eky (U)é} .
We plug (4.29), (4.30) in (3.12) with pg, = 6, px, = 3 and we sum for k; + ko < k, j1,J2
in J(h, C). We obtain that, for some P in ¥,
|2 Al B W, W — W) .

k1 +kat+ks<k =1

4 C A1 =48021=3+b p(y)

+ 012j7j+(b+%(a,b))hgp(v).
Since 27 < Ch~28, for 3 small enough and a — b > 1, we get a quantity bounded from above
by (4.28). This concludes the proof. O

Let us deduce from Lemma 4.7 a sharp version of (4.13).

COROLLARY 4.8. — Let k > 1. There are C > 0, and an element Py, of I such that for
any j in J(h,C), any v with §_1(v) < h=1/16
4.31)

|Oph, (22€ + [¢]2 ) w; — 2792V RA(R )Zk@* ATQo(Wa)|| 1

1 1 .
< cm—%;z—m[ > Hgkz )5 6, (V)5 + B3 Po(v) + T g (v) .
ki1t+kot+ks<k (=1
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Proof. — We start from estimate (4.13). If in the left hand side, we replace Qo(W)
by Qo(Wy), the resulting error is bounded from above by the product of (4.28) and of

vh2 ]/ZHG JH}"(L2 L?) _O( 1/2)

We obtain a contribution to the right hand side of (4.31). On the other hand, the right
hand side of (4.13) is bounded from above by the right hand side of (4.31) if we write that
2J/4p9/8 < 2j/2h;/2h5/8. This concludes the proof. O

Proof of Proposition 4.6. — Let us prove that for any j in J(h,C)
(4.32)

|Opy, (22¢ + [€]%) Opy, (14) Z5w; | .

SC’hé_Oh}T”b{ Z Hgke )3 6, (v)% + héPk(v)+gk+l(U)J

ki+ko+ks<k (=1

for some element Py in Y.
We notice first that since w; = ©* ; Aw, the definition of &}, shows that

(4.33) | Z5w;]| . < Tr(w)20/47+e,
Consequently, by the gain of one power of h; coming from symbolic calculus, we see that
1
1[Ops, (22 + [€]*), Ops, (v4)] Zfws .
is estimated by the last term in the right hand side of (4.32). We are reduced to estimating

|Ops, (74) Opy, (22€ + |§|%)Z;“ijL2 which, according to (4.31) is smaller than the right
hand side of (4.32) modulo the quantity

(4.34) 277/2V/1||Opy,, (v4) 2507 ;AL Qo (W) | -
Since wy is given by (4.26), we may write for k' < k
ZFwa= > ©3(Z} Opy, (1a)w;)
jeJ(h,0)
and by definition of &k (v), and the fact that w; = ©* ; A;’w, we have
125 O, (ra)wy | < CP/4I0T o (v).
Since w; is microlocally supported for h;|£| ~ 1, we deduce from that
125" Opn, (radus | o <R320 (v),

By Definition 2.5, this shows that the family (Z f/ Opy,, (7A)wj)j is a family of elements

of (h=2 BLAK]) N (B9 [K]) for some compact K of T*(R \ {0}) \ 0, contained in a small
neighborhood of A, and that

k/
||Z] Oph] (’YA)U)] ||h_% (B}):l [K]’
which is by definition the best constant in (2.8), is smaller than C/(v). A similar estimate
holds for ||Z K Opy, (ya)w; || B0 . We shall now prove that Qo(Wy) is microlocally sup-

ported outside a nelghborhood of A
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Let us express Zon(WA) as a combination of terms By (Z"”1 W, Z*2 WA), ki+ky <k,
so as a combination of expressions deduced from (3.7).

0Py, (a0(©)) [(OPs (a1()) 7" wn) (O, (a2(6) Z*wn ) .
(4.35) Opy, (a0(8)) [ (OPs (01(6)) 25 wn) (Opy (a2(8)) 2%,
Opy, (ao(§)) [(Oph (a1(€)) 2" wA) (Opy, (az(ﬁ))zhﬁz\)],

!’
where ag, a1, as are homogeneous of non negative order. We have just seen that Z Fawn is

. ~1l,a ~0,a . .
in (h=2 B, [K]) N (B, [K]) with norm in that space bounded from above by CF ./ (v).
It follows from Proposition 2.12 and the fact that « is large enough relatively to b that the

~1b ~1,b
first (resp. second, resp. third) expression (4.35) belongs to h=2 B, [K»] (resp. h=2 B, [Ko],

resp. h*%%;a[K_g]) where K> (resp. Ky, resp. K_5) is a compact subset of 7*(R \ {0})
contained in a small neighborhood of 2 - A (resp. 0 - A, resp. —2 - A), and that the norm
of these functions in those spaces is O (T, (v) Tk, (v)). Consequently Z¥©* ; AhQq(Wy) is
microlocally supported far away from A. When we apply an Opy, (va) cut-off as in (4.34),
we gain an O(h$°) = O(h™) factor. We conclude that (4.34) is bounded from above
by BN 3, s ka<k Tks (©) Tk, (v) 50 that (4.34) is controlled by the h'/8-term in (4.32).

To finish the proof of Proposition 4.6, we are left with showing

LEmMMA 4.9. — Assume that (4.32) holds. Then estimate (4.27) holds as well.

Proof. — The definition of & (v) and the fact that w; = ©* ; Av implies that
(4.36) 10, (va) Zfw; | 12 < €277+ T 4 ().

Since (2z¢ + |§|%) = (¢ — dw(x))g(z, £) for some elliptic symbol g, on a neighborhood of
the support of v, we deduce from (4.32), (4.36) and symbolic calculus that

(4.37) 10Ps, (¢ = dw(@)) Opy, (1) Z5wj| o < hF hE~OM27I+

where

M=0C { > H T (0)% 6, () + hE Pi(v) + %H(v)}

ki+ko+ks<k (=1
for some Py in I . We may rewrite (4.36) and (4.37) as

e @7t 0y, (40) ZEw,

L, SO289 T (w),
[s22) (e 7% O () Zbw, ), < Onfnd—onsz e
1 1
Using that ||| o = O(IIflI32 1D2f1172 ) we get

|04, (1) Z¥w; |, .. < CR7025 -3+ (T, (v) M)
< Ch™%277+b )y
This implies (4.27). O

(NI
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Proof of Proposition 4.1. — We combine estimates (4.23) and (4.27). We obtain

[Zhwl <o) ¥ Tt

(4.38) ki+ka+ks<k £=1

+ héPk(v) + 9k+1(v)] 2_j+b

for any j in J(h, C) and some Py in I, assuming an a priori bound &_1(v) < h~/16,

We assume that (4.8) holds and that (4.9) has been proved up to order £ —1. Consequently,
by (ii) of Lemma 3.3, we know that

sup(27+1]| A% Op,, (1 - ¢0) (h%€)) 2% .. ) < Creh,
J

10Dy, (00 (h=2=7€)) Z%0|| .. < Creh T,

where Cx depends only on Ay, ..., Ag.

On the other hand, (4.38) gives a control of || A" Z*
the definition (4.4) of & (v) we obtain

é’k(v)gC’h‘O[ > Hgkz )3 6k, (v)3

(4.39) k1 +ko+hs<k £=1
+hie [Pk(v) + C’ks] + h709k+1(v)-

Let us deduce from this that (4.9) holds at rank k. By the assumption (4.8) and the fact that
by (4.1) 8}, > 641, wemay bound h0F 41 (v) by sAfch_‘sl/v for some A) > 0 depending only
on Ay 1. The same is true for hs Cie, with A}, depending only on Ay, ..., Agy1. Consider
the h1s P, (v) contribution. By definition of the class & and (4.7), this term has modulus
bounded from above by quantities of the form

(4.40) T8 Sy (v) -+ Gy (V) Ty, (V) -+ Ty, (0)

where ¢/ < ¢ < 4, ky + --- + k¢ < k. Assume first that one of the k;, 1 < j < £, is
equal to k, so that the other ones equal 0. We obtain, according to assumption (4.8) a bound
in Chis—('=1&%—(='+1)01 £ (1)) with a constant C depending only on Ay, A;.

By (4.1) and (4.2) this is smaller than C@k(v)hs% with a constant C' depending only
on Ag, A;. On the other hand, if all k;, 0 < j < ¢, are strictly smaller than k, we may
apply the induction hypothesis to estimate &, (v) and (4.8) to control ¥, , (v). We obtain
for (4.40) a bound in Cehts %%, according to the first inequality (4.1), where the constant
depends only on Ag, Ag, ..., Ak.

Let us study now the first term in the right hand side of (4.39). When k1 < k, ko < k,

ks < k, we write
(4.41)

V|| ;o for j € J(h,C). Going back to

ongke ) 60,0 < T (T1 ()6 (0)r, 0)
+ 61 (0T 1 (0) 6y (0) + 61, ()61 (1) Tk, (0))
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By (4.8), the fact that (4.9) is assumed to hold for k;, < k and the first inequality (4.1), we get
that (4.41) is O (k=) with a constant depending only on Ay, Ay, ..., Aj1. Finally, we are
left with studying the first term in the right hand side of (4.39) when one of the &; is equal
to k, i.e.,

B0 (0)F T1(v)3 Fo(v)3 Eo(v)F < 268k (v) + %5‘2h_09k(v)go(v)2£o(v)4

w| N

for any § > 0 (where in the right-hand side, »~° denotes 2 =3¢ if in the left hand side h~°
stands for h=% with & > 0 small). The last term in the above inequality is O(eh %)
according to assumption (4.8) and the second inequality (4.1), with a constant depending
only on Ag, A1, ..., Ap41. Summing up, we have obtained

() < [%5 + ChE 4(v) + ALk

from which (4.9) at rank k follows if h and § are taken small enough. O

5. Decomposition of the solution in oscillating terms

The goal of this subsection is to give a description of the component w in the decomposi-
tion (3.19) of v in terms of oscillating contributions. More precisely, we expect w to be a sum
of a main term, oscillating along the phase w (i.e., a term which is a Lagrangian distribution
along A), of O(\/E) terms, coming from the quadratic part of the nonlinearity, that will oscil-
late along the phases 2w (so, which are associated to the Lagrangians £2A), of O(h) terms,
coming from the cubic part of the nonlinearity, oscillating along the phases +3w, +w, and
a remainder. Moreover, we shall need, in preparation for next subsection, to get an explicit
expression for contributions oscillating on +2A.

We consider a solution v of (3.6) satisfying for h in some interval |h’, hy] the a priori
estimate (4.9) for &’ < 5 + N for some fixed N; < s. In particular, for k < § 4+ Ny,

(5.1) |ArZR||, . < eAh~0kom+b

for j € J(h,C). In this section, we shall denote by K compact subsets of T*(R \ {0})
contained in a small neighborhood of one of the Lagrangians £ - A, ¢ # 0, by L compact
subsets of T*(R \ {0}) and by F' closed subsets of 7*R whose second projection is compact
inR\ {0}.

We first obtain a rough decomposition of v.

LEMMA 5.1. — One may write v = vp + wp + wae + vy, where vy, vy are defined in
(3.19) and, for some compact subset K of T*(R \ {0}), lying in a small enough neighborhood
of A and intersecting A, some closed set F as above, ZFwp, 0 < k < 5 + Ny is an
O(e) element of h=+1 L®I3*7?[K] and Z*wpe, 0 < k < 5 + Ny is an O(e) element of

, ~0,b—2 , o~ —1,b—2
h: %@ T[F]+ R @ T[]

0,b—

’ ~1,b—2 ’ ~
Moreover, Op,, (€)Z wye is in h2 0kt B [F]l+h k1B [F).
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Proof. — We have written in (3.19) v = v;, + w + vy and using notations (4.10), we may
decompose w = ZjeJ(h,c) ©jw;. Recall Definition (4.11) of symbol v, and set

wjA = Opy, ()w;, j € J(h,C)
so that Z*w, = ZjEJ(h,C) S} (Z?wj’,\). Since, when commuting Z? to Ophj (ya), we
get expressions of the form Opy,, (%’i’)Z? with ¥ < k and &,’i’ a new symbol, we deduce

from estimates (4.9) that Z*w, belongs to h~% @Z;b [K] for a compact set K satisfying
the conditions of the statement if v, is supported in a small enough neighborhood of A.
Moreover, Z*w, is O(¢) in the preceding space. If we use symbolic calculus, estimates (4.15),
(4.16) and the assumed a priori estimates (4.9) together with (4.1), we get

(5.2) |Op, (226 + 1€12) Z5wja || o < Ce279+C=Dp=0ki1 [n3 4 ],

ie., (waj,,\)j belongs to B k41 L""IX’I’_2 and is of size O(¢) in that space. This gives the
statement concerning wy of the lemma.

Set wj ae = Opy,, (78)w; so that wpae = ZJEJ(}L’C) OFwj ac. We use (4.22) with p = oco.
We estimate the first term in the right hand side of this inequality using (4.15), (4.16), the
bounds (4.9) together with inequalities (4.1). We get

(53) ||y, (V0)Zhw;| o < Ce277+ D R0kb1 (B2 + hy) + CyehY h0k277+0,

where the last term has been estimated from (5.1).

If N is large enough, since h; < Ch® we get that Z*whe is in

B3Okt é;g;b_Q[F] + B0k @;1’1’_2[}7]

and is O(e) in that space (where F is a closed set as described before the statement of
Lemma 5.1).

To study Opy, (z€)wae, we write

Opy(z€)wae = 2207 Opy, (z€)wj e
jeJ(h,C)

By symbolic calculus, we may write Op,,  (z€)w;,a< from

Opy,, (Fac)wj,  Opy, (vac) (Opy, (26)w;),
where 4. is a cut-off with support contained in the one of yp.. The L>°-norm of the action

of Z? on the first of these expressions is bounded like (5.3). The second expression may be
written from

Opy,, (Ya<) Opy, (22€ + €17 )w;,  Opy, (vac) Opy, (1€]7 )w;.
The L*°-norm of the action of Z; on the last term is bounded using (5.3) by the right hand

side of this inequality. For the first term, we use again (4.15), (4.16) as in the proof of (5.2)
to get a similar upper bound. This concludes the proof. O

The decomposition w = wp + wpe, in terms of a contribution wy localized close
to A and another one wy. supported outside a neighborhood of A is not precise enough
for our purposes. We need to refine it, writing wp. as a sum of terms oscillating on the
Lagrangians +2A, of size of order v/h, and of a remainder that is O(h). Moreover, we need
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also to check that w, is in h_%;wlL‘x’jX’bl [K]. This is the goal of next proposition, that will
be proved plugging the decomposition of Lemma 5.1 in the equation (3.23) satisfied by w,
written under the form

(5.4) Opy, (2a€ + €] )w = —VhQo (W) + h[%w —iZw— CO(W)] — hiR(V).

PROPOSITION 5.2. — Let b’ < b— 5 and Ny < Ny such that (N; — Ny —1)o > 1. We may
write the first decomposition of w

(5.5) w = wp + Vh(wap +w_21) + hg

. ot 2 b 43 .
where, for any k < £ + Ny, Z*wion isan O(e) element of h 25k+1L°°Ii2A+2 [K12], ZFwy is

’

-6 oo 70,0’ k_ - =38k 14N, —N 70
an O(e) element of h=°x+1 L J " [K], Z" g is an O(¢) element of h™ °*k+1+N1-No B__" [F] and

/ ~1,b
7% Op,,(z€)g is an O(g) element of h™3%k+1481-No B [F), for some compact subsets Ko
of T*(R \ {0}) \ 0 contained in small neighborhoods of +2A, some closed subset F of T*R
whose second projection is compact in R\ {0}. Moreover, wyap are given by

wap = —i(1 — x)(zh™P) 1 +4\/§
(5.6)

w_op = —i(1 — x)(zh™?) 1 _4*@

where x € C§°(R), x = 1 close to zero has small enough support.

|dw(z)] w},

|dw(a)| w3

In order to prove the proposition, we shall compute the main contribution to Qq(W)
obtained when plugging inside (3.7) the decomposition w = wp + wpe obtained in
Lemma 5.1. We make at the same time a similar (and more precise) computation when
one knows that an expansion of the form (5.5) holds.

LEMMA 5.3. — (i) Assume that w = wa + wpe, where for all k < 5 + Ny, ZFwy

, - L =02
(resp. Z*wpe) is an O(e) element of h_5k+1L°°IR’b_2[K] (resp. of B3 %+ B "[F] +
L5 b2 A 1~ 12 s 0.b=2
R =%+ B [F]such that Z® Opy, (x€)wpe isin k2~ k+1 B_  [F|+h' 1B [F]).
Denote by b’ any number b’ < b — 5. Then, there are functions W+oa such that for k < 5 + Ny

X an is O(e) in b2k LX T 3 [y
so that
> AMQu(W) = wWap + W_aa + Vhi,
(5 7) j€J(h,C)
> ANWKCo(W) = Vhgs
jE€J(h,C)

where for any k < % + Ny,

/41
~1,b +§

' ~1,b'+1 5 - st
%52, 2% Opy, (2€)go € K21 B *[F), %G5, 2" Op,,(2€)gs € K370 B " *[F]
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for some new closed subset F' of T*R. Moreover one may write

s V2

Wan = —i(1 — x)(zh™P) |dw|? Tw/?v

1 V2,

W_gp = —i(1 — x)(zh™ ﬁ) |dw|2 —wA,

(5.8)

Jor some x € C§°(R), x = 1 close to zero, with small enough support.

(ii) Assume one is given a decomposition of w of the form (5.5) and denote by b’ any number
b < b — 8 Then there are elements wWiop such that for 0 < k < 5 + No, ZEWiop is
O(¢) in h_25;+1L°°ji’§;\+3/2 [K12], and for £ € {£1,+3} elements W, such that, for any
0<k< 3+ No, AT O(e) in h_35/k+1L°°I~gAb/+3/2 [Kg] so that

(5.9 Y. AMQuW)+VRCo(W)] = Wan+@—_oa+Vh(Dsa+Ba+T-_p+T—31)+h§,
jeJ(h,C)

;= 1b 43 P W
where Z%G is in h=%%+r B " [F| and Z* Opy, (x€)g is in h=*%+r B [F) with P = Ny —
No + 1.

Moreover, wy is given in terms of wp and of the functions in (5.6) by

) 3
WA = 5(1 — X)(:ch_ﬂ) |[dw|? EA(sz - E,QA)
(5.10)

1
+Z(1_X)(Ih ) dw(z) }wA’ wh,

for some x € C§°(R), x = 1 close to zero, with small enough support, and Wsp, W_p, W_3p
have similar expressions

. 7 _ 3 __
WA = 5(1 X)(@h™7) [dw|? wa (Hywon + p5W_24)

+ (1= ) (eh™7)| dw(@)|? pf w3,
T_p = 2(1—x)(xh™?) [dw|? wa (W yw_on + s’ T2

?
(5.11) 2
+ (1= x)(zh ™) |dw(@)|? py |wa "W,
T_gp = (1 = X)(@h™F) [dw|® W (g + p! 5T021)
+ (1= x) (zh~?) | dw(a)|? uyws,
Sor some real coefficients p, p, py’, £ € {—3,-1,3}.

Before starting the proof, we make the following remark that will be used several times
below.

REMARK 5.4. — Let s be a smooth function on R*, such that for some real numbers ¢, ¢/
and for any integer k, 8% = O(|z|~*"*(z)=*). Let x be in C§°(R), equal to one close

to zero and let r be an element of @Hﬁ[ K| for some compact subset of 7*(R \ {0}). Then

(1 = x)(zh—#)r(z)r belongs to B T P 1.
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Proof. — Wedecomposer = 3. ;, o) ©57; Where (r;); is a bounded family in 3.7 [K].
Then
1= (h P)er= > O
j€J(h,C)
with 7; = (1 — x)(2279/2h=8)k(279/22)r;. Since r; is microlocally supported in K we may,
modulo an O(h$°) = O(h®) remainder, replace r; by 6(z)r; for some 6 € C5°(R), equal to
one on a large enough compact subset of R*. Since

z— (1- X)(m2—j/2h—ﬁ)2_%“+él)+j+%5(2_%m)0(x)
isin C§°(R*) and has derivatives uniformly estimated in j, h, we see that (7;); is microlocally

4 2
supported on K and satisfies uniform bounds in g+ “*)7F % k. O

REMARK 5.5. — Let x1, x2 be two C§°(R) functions equal to one close to zero and r be
in Q?Zj [K] for some compact set K of T*(R \ {0}). Then, if Supp x1 and Supp x2 are small
enough, (1 — x1)(zh™?)r and (1 — x2)(xh~#)r coincide modulo O(h>) (so that they are
identified).

Proof. — We write again

(1= x)(@h %) = (L= xa) (b D)]r = > 65](x2 = x1)@2 720 ")y .
J€JT(h,C)
As above, modulo O(h*°), we may insert some cut-off 6 against r;. We may then notice that
(x2 — x1)(277/2h=8)0(x) = 0 if Supp X, is small enough, as 277/2h=F > ¢ for some ¢ > 0
since j is in J(h, C). O

To prove Lemma 5.3, it will be necessary to compute explicitly the action of some multi-
linear operators on functions of the type w = wy + wpe.

Let us fix some notation. If p;,ps are in Z*, K,,,, K,, are compact subsets contained
in small neighborhoods of p; - A, py - A and if wgr A is an element of Loofgf,’]\” (Kp, ],
Proposition 2.12 shows that the product w,, , - w? , belongs to LT, (’;111’;22’)711\“2 [Kpi+ps)
for some compact subset K, +p,, of T*(R \ {0}) contained in a small neighborhood of
(p1 + p2) - A, if K, and K, were contained in small enough neighborhoods of p; - A,
p2 - A respectively. In the sequel, to avoid heavy notations, we shall eventually denote by K,
different compact subsets of 7% (R \ {0}) contained in a small enough neighborhood of p, - A.
All of them will be constructed from a compact subset K of 7*(R\ {0}) contained in a small
enough neighborhood of A. To simplify some notations, pA will sometimes stand for p - A.
We shall also denote by L some compact subset of 7%(R \ {0}) which may vary from line to
line.

LEMMA 5.6. — Letby: R* — C, £ = 1,2, 3 be smooth functions positively homogeneous of
degree dy and ag, a1 : R* — C be smooth, positively homogeneous of degree mg, my.

Let py be in Z*, |pe| < 3,4 =1,2,3. If p1 + p2 = 0 (resp. p1 + p2 + ps = 0), assume
moreover that ay (resp. ag) is an homogeneous polynomial of order m, € N* (resp. mg € N* ).
Let v be a large enough positive number. Let x be in C3°(R), x = 1 close to zero, with small
enough support.
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(1) Assume given for ¢ = 1,2, 3 functions wf;ZA such that for some N and any k < 5 + N,
Z kwﬁ LA IS in R0k 1 L] gljl,’;x [Km] , for compact subsets K, satisfying the above conditions.
Denote py = 2(mq + di + dz2), ps = 2(mo + m1 + dy + da + d3). Then,
(5.12) Oy (a1)[ (O (b1)w}, 1) (Opy (b2) w2, )]
may be written as the sum of
(5.13) (1= x)(@h™P)a1 ((p1 + p2) dw)bi(p1 dw)ba(ps dw)w, w2 4,
which is an element of h™ 28] [ 00 2,20/ [Kp1+p2] such that the action onk on it gives an

(p1+p2)-A
element of h™20k+1 [, 22’ [Kp,+p,] for k < 5+ N, and of a remainder R such that, for

(p1+p2)-A
those k's, Z*R is in

po—1,2b"— no—2,2b"—1

(5.14) h =2 B [ ]+ A2k B [L].

In the same way, a cubic term
(5.15) Opy (a0) 0P (a1){ (Opy (br)wh, 1) (Opy (b2) w2, ) } (Op (Ba)uw?, ) |

may be written as the sum of
3
(5.16) (1 = x)(@h™P)ao((p1 + p2 + p3) dw)ar ((p1 + p2) dw) H (pedw)w peA,

which is a function such that the action onk onit,k < 3+ N, gives an element of

34, 0o Fu3,3b’
h=k+t L I(P1+P2+P3)A[Kp1+p2+p3]

and of a remainder R such that Z*R is in
3b'—j/2
(5.17) th—?’% R

(1) Assume that we are given a function
(5.18) w' =wp, \ +Vh [wém./\ + w£2pz-/\}
where for k < 5+ N,
kaﬂpe Alsinh™ 25’€+1L°°Ii§m A Kx2p.]s

kaf;r/\
Assume also that py + 2ps # 0, po + 2p; # 0. Then (5.12) may be written as the sum of
a quadratic term, given by (5.13), which is such that the action of Z* on it gives an element

th—25k+1 L J&217i22) A [Kp1+p2], of a cubic term, which may be written as the product of V'h
and

isinh~ kHL""Jng [Kp,]-

(1= )(@h™?) a1 (1 + 2p2) dw)ba(p1 dw)ba(2p2 dw)w}, s, 0
+a; ((p1 — 2p9) dw)b1 (p1 dw)ba(—2p2 dw)wzl,lAw2_2p2A

(5.19) 1 2
+ a1 ((2p1 + p2) dw) b1 (2p1 dw)ba(p2 dw)wy, w2, A

+ a; ((—2p1 + p2) dw)bl(—2p1 dw)bs(p2 dw)wiQmAwng
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and of a remainder term R. Moreover the action of,Z’C on(5.19),0 < k < 5+ N, gives an
element of

& [e’s) 2b’ —36" [e%) 2b’
Z h3%k+41 ], I(l;721:t2p2) A[Kp1i2pz + Z R 3%k, Ié?z:l:Qpl) A[Kp2i2p1]
+,—

and the action of Z* on R gives an element of

~ pa—1,2b"—

(5.20) R4k B ’[L).

Proof. — (i) We use Proposition 2.11. By (2.17) applied with a symbol a = b,(€), £ = 1,2,
we may write

(5.21) Opy (be)wh,a = (1= x)(xh™?)be(pe dw)wh , + 7

where the action of Z* on # (resp. on the left hand side, resp. on the first term in the right
, ~2dy—1,b'—1 . , ~ ,
hand side) of (5.21) is in h2 %+ @_* *[L] (resp. in h_5k+1L°°I§j/§’b (Kp,D.

By Proposition 2.12,

(5.22) z* [(Oph(bow,l,m) (Opy (b2)w?, ) —(1—x) (zh %) *by (p1 d w)b2(p2 dw)wilAwizA]

is in

2(d1+d2)—1,2b"— 2(d1+d2)—2,2b"—1

hE =2k @ 1)+ A2k B L]

and the second term in (5.22) belongs to

26’ oo 72(d1+d2),2b"
h™2kar L BN [Kpy1ps)-

We make act Op,,(a1) on the bracket in (5.22). By Proposition 2.11, this gives a remainder R
satisfying the conclusions of the statement. Moreover, the action of Op,,(a1) on

(1-x) (wh_ﬁ)2b1 (p1 dw)ba(p2 dw)wll)lAwiA

may be written as (5.13) modulo similar remainders. Notice that the second remark after the
statement of Lemma 5.3 allows one to replace any power (1 — x)? (zh=?) by (1 — x) (zh™#)
if Supp x is small enough.

One studies the cubic expressions (5.15) in the same way.

(i1) We start from the stronger assumption (5.18). By (2.17) and the lines following that
formula we may write Opy, (be)w® as

(1= x) (zh ™) be(pe dw)wy, 5

(5.23) + V(L= X) (5h~?) [be(2pe dw)wh, » + be(~2prdw)u’ o,
+ 7
;o ~2dg—1,0'—1
where the action of Z* on 7 is in A1 ~2%+1 B__° [L].

Moreover Z* (1= x) (zh=?)be(pe dw)w pzA] (resp. Z*[(1 [(1 = x)(zh=P)by(+2p, dw)wigpm])
belongs to

W0 L 29V (K, ] (resp. 200 LYY [Kiop,]).
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Applying Proposition 2.12, we obtain that (Opy, (b1)w") (Opy, (b2)w?) may be written as the
sum of quadratic terms

(5.24) 1-x) (mh_ﬁ)zbl (p1dw)ba(p2dw) (w}HA) (w12,2A),

of cubic terms

\/E(l -x) (l’h_ﬁ)2 |:b1 (p1dw)ba(2p2 dw) (wzlnA) (wgpz/\)
+ b1(p1 dw)ba(—2ps dw) (w})l/\) (w2—2p2A)
+b1(2p1 dw)bz(p2 dw) (w3p, ) (W), 4)
+ b1(=2p1 dw)by(p2 dw) (wly,, 4) (wng)}

(5.25)

~ 2(dy+da)—1,2b"—
and of a remainder R such that Z* RY is in h1=4%k+1 @ (dda) = [L]

To study (5.12), we make Op,,(ag) act on (5.24), (5.25) and on the remainder. We know

from Proposition 2.12 that (1 — x) (sch‘ﬁ) wy Aw2 I8 in b 25k+1L°°J(0pfip2) A [ Eprtps]

and that (1 — )(:vh_fg)lel)lAwiM2A (resp. (1 — x)(zh™~ ﬂ) Wl aw2, ) belongs to

51 70,20’ S 70,20’
B k+1LOOI(P1i2p2) A [Kpli2p2] (resp h~? k+1LooI(i2p1+p2) A [KiZIJlJer] )

To study the action of Op,(ag) on (5.24), (5.25), we may use (2.18), noticing that, since d w
is homogeneous of degree —2,

a1(§)b1(p1 dw(z))b2(p2 dw(x)),
a1(§)b1(p1 dw(z))ba(+2p2 dw(z)),

a1(£)b1(42p1 dw(z))b2(p2 dw(z))
satisfy the assumptions (2.15) with (¢, ¢',d, d’) replaced by (—2(d; + ds),0,m1,0). We con-
clude that (5.12) is given by the sum of (5.13), (5 19) and remainders R such that the action

k 1-a6] , | M2~ 1,20 =
of Z% on R gives elements of h k41 % [L] Moreover, (5.13) and (5.19) belong to

the spaces indicated in the statement of the lemma. This concludes the proof. O

Proof of Lemma 5.3. — (i) Let us prove the first equality (5.7). Recall that we denote
W = (w,w). In the same way, set W = (wa,Wa), Wae = (wpe,Wpe). If By denotes the
polar form of @, we have

Qo(W) = Qo(Wa) + 2By (Wa, Wae) + Qo(Wae).
For j in J(h, C), we set
Go,; = h™ 20" ;AL[2Bo(Wa, Wae) + Qo(Wae)].

Let us show that go = > eI (h,C) ©7 go,; satisfies the conclusions of the lemma. By assump-

’ ~0,b—2 .. 1_ st ~0,b— 1,b—2
tion Z¥wy isin h=%+1 B "[K]and Z¥wy. isin h3 0+ B [F] + ROk,

We plug these informations inside (3.12). We get
R P M

max(j1,j2)>j—C
J1,j2€J(h,C)

w 9~ (F1++724)(0-2)

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1204 T. ALAZARD AND J.-M. DELORT

Summing using the fact that the number of negative j,’s in J(h, C) is O(|log(h)|), we obtain a
bound in 2979+ (=2 p 72541 which is the bound characterizing elements of 72 ~2%k+1 322 F)
(where F is a closed set of the form C~1 < |¢]| < O). In the same way

<C¥ Z 9% min(j1,j2) [h%-(s;c+1 " h1—55c+12—%1]

max(j1,j2)>j—C
J1,32€J(h,C)

| A" Z* By (Wae, Wae)

I

x [h%*‘ml + h1*5’k+12*%2]

w 9~ (F14++724)(6-2)

Summing we get a bound in C [27h1‘25;c+1 +23 h2‘0‘25§c+1} 277+(=2) This characterizes an
element of h'~2%k+1 B2 2 [F] 4 h2~0~20k1 L% [F]. Summarizing, we get finally that g,

is in b~ 20k @;b_% [F'] which is the wanted conclusion since we assume b’ < b — 3.

To estimate Opy, (z€)g2, we have to perform similar estimates replacing By (WA, WAC)
(resp. Bo(Wae, Wae)) by (zhDy)Bo(Wa, Wae) (resp. (zhDy)Bo(Wae, Wae)). If S(€) is a
positively homogeneous function of order A > 0, smooth outside zero,

[Opy, (2£), Opy, (S(€))] = iAh Op, (S).

Consequently, the expression (3.7) of Q¢ and Leibniz rule show that Op,, (z£)Qo (V) may
be expressed from By (Op,, (z€)V,V) and from hBy(V,V), where By is a bilinear form
satisfying the same estimates (3.12) as By. (Actually, By is either a multiple of the polar form
of the quadratic form in the first line of the right hand side of (3.7), or a multiple of the polar
forms of the sum of the second and third lines.) The last property stated in Lemma 5.1 implies

that
k 15 0b—3 1_g . m—1b—3
Z" Opy(z€&)wpe € K2 7%+1 B “[F]+ h' ™ %%+1 B [F].
; ~0,b—2
Moreover, still because of this lemma, Z*w, isin h=%+1B_ "[K] for a compact subset K
of T*(R\ {0}). It follows from (2.13) and the fact that ¢ restricted to such a compact set is

, ~1,b—2 ; ~0,b—3%
in the class of symbols S(1), that Z* Op,, (z€)wa isin k= %+1 B “[K] Cc h =%+ B *[F].
This shows that to estimate Opy, (&) Bo(Wa, Wae), Opy,(2€) Bo(Wae, Wae), it suffices to

use the bounds obtained above for Bo(Wa, Wac), Bo(Wae, Wae) replacing b by b — % We
.. _os! . plb—3 Y- 1,6 +3
conclude that Opy, (z€)ga isin A= *x1 B [F] C h™*%+1 B " [F].
We compute next Qo(Wy) from (3.7). Let us examine first the contributions that are
bilinear in (wy, W, ), i.€.,

~ % Op,(1€]%) | (Opa(elél~)wa) (Op (€lel#)n)

?

— 00, (1€1)[ (0p, (€1 )wn) (Op €1 an) |

+ % Oy ([€]) [wa Opy (1€]% yia — 122 Oy (€]

~ 5 04 (6)[wa Op, (€le]H)n — s O, (€le]Hywa |.

We use that (5.12) may be computed from (5.13), up to a remainder given by (5.14) with
pe = 3,0 = b — 2, that contributes to vhj, in (5.7) (since b < b — 5 and b is large

(5.26)
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enough). Notice that the main contribution, computed from (5.13) vanishes. For the terms
inside the first two brackets in (5.26), this follows from a two by two cancellation between the
two contributions in each bracket. For the last term in (5.26), we remark that the symbol &
of the outside operator Opy, (£) is an homogeneous polynomial, which allows us to make use
of expansion (5.13) with a; = &, p; + p2 = 0, and implies as well the vanishing of that term.

We are left with studying the quadratic terms in wy and the quadratic terms in wy in (3.7).
We may apply to both of them (i) of Lemma 5.6 with (p1,p2) = (1,1) or (p1,p2) = (—1,—1).
We get the contribution to Qo (W, ) given by the sum of the two expressions (5.8).

, ~0b-2 .

To study Co (W), we use that the assumptions imply that Z*wisin A=%+1 B_ " [F]. (This

~—1,b—2 ~ 0,b— . .
follows from the fact that h B [F] C B, [F), as a consequence of the inequality
h; = O(h?).) To bound || A*Z*Co(W)||, ... we apply (3.15) withp = 00, d = b—a — 20,
Vi =V, = V3 = W. Our assumptions on w and d imply that

sz h.D Oé"rdeLoo _O( k+1_0)
as is seen from the expansion w = 3, s, oy ©;w; and the bounds on the w;’s. It follows
from (3.15) that
(527 4524 Co(W))] . = 02790072 Op5hes0),

. ’ ~ 1,1),4»l
The conclusion Zkg3 c h—35k+1—0@00 2

number strictly larger than 2).

[F] follows if we assume b’ < b— ¥ (since o is any

, 1,6/ +1
To obtain that Z* Op, (z€)gs is in A~ 3%k+1~ % * [F] we make Opy, (z€) act on Co (W)

and we argue as in the study of quadratic terms, distributing xhD,, on the different factors
, ~0b—3

using Leibniz rule. We have seen that Z* Op, (&)W is in h=%+1B_ *[F]. It follows as
above that we get for || A" Z* Op, (2£)Co(W)|| . the same estimate as (5.27), with b replaced
by b — 1/2. This gives the wanted bound as b’ < b — 5. This concludes the proof of (i) of the
lemma.

(i1) Let us show first that we may replace in the quadratic (resp. cubic) part of the left hand
side of (5.9) w by w, = wp + \/ﬁ(ng + w,zA) (resp. by wp) up to a contribution to the

;=00
hg term in the right hand side. By assumption, Z kwp isin h=%+1B__" [F]forsomed’ < b—
Set W, = (wp,@p), G = (9,9) and let us show that the contributions of Z kBo(Wp, G)

and thBO(G G) are in h~%0k+p Q? [ ]. We use (3.12) and the assumption that Z*g is
in h~30%+p Q? [ ] to bound using (3.12)
AL Z By (W), < €2 Y sk Gt

max(j1,j2)>j—C
J1,32€J(h,C)

We get an estimate in O (h~*%+r2/=7+") which shows the wanted conclusion. One argues
in the same way for hBy(G, G).
Considering the cubic term we write w = wa++v/'hg’, where ¢’ g = (wopt+w_24) +v/hg sat-

isfies 2%¢' € h~ 25k+173 [ ] and where Z*w, is in b~ k+1Q3 [ . If we set G’ = (¢, 7'),
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we have to study HA?Zk [Co(Wa + VAG') — Co(Wh)]
|| AP ZF Ty (Wy, G, G

| r i VR AR ZP T, (W, W, G|,

)|, and A3 | ARZ*TH(GY, G',G")||, - If d = b — & — 0, we bound

||Zk<th>Oé+dWA — O(h—o—él/HJ)7 ||Zk‘<th>O¢+dG/ — O(h_Qél,H’l_O).

||LOQ ||Loo

Plugging these estimates in (3.15), we get for the quantities under study a bound in terms
of 25 =9+ —a=0) =40, 11 +3 L et us study as well
Opy, (2€) Bo(Wa, G),  Opy(2€)Bo(G,G), Opy(x€)[Co(Wa + VRG') — Co(Wh)].

As in the proof of (i), we may express these quantities from

By (Opy (&)W, G),  Bo(Wp, Op,(z€)G),
VhTo(Opy, (x€)Wa, Wa,G'), VhTo(Wa, Wa,Op,, (2€)G),
hTo(Wa, Opy, (2€)G',G'),  hTo(Wa,Op,(2€)G',G'), h3Ty(Op,(z6)G, G, G"),

and from quadratic and cubic quantities of the form of those already estimated. By assump-
, ~ 1,0 , ~0,b/ -1
tion, the g-term in (5.5) satisfies Z* Op,,(z€)g € h™3%+r B [F] ¢ h=3%+r B *[F).
;=0 .
Moreover, by definition of that quantity, Z* Op,, (z€)w,, is in h=%+1 B_ [F]. The above esti-
mate of By, with b’ replaced by b’ — %, shows that

| A" Z* By (Opy, (2€) Wy, G) || o + || A Z" By (W, Op, (2€)G) ||, = O(h~*krrgi=i+('=3)),

;=2 -1 ;=10 -3 o
We obtain a h™*%+r B *[F] < h~*+rB *[F] contribution to Z* Op, (x€)g
in the action of Op,(z€) on (5.9). The definition of ¢/ implies that Z* Op, (z€)g’ is

in h™2% @Z;b 2 [F]. Bounding, with d = b’ — % —a—0
HZ’f(th>a+d Oph(xf)WA”Lm - O(h_0_5;c+1),
125 hD)2* Op (26) G| o = O(RTO72%),
we get again from (2.15) that

1A% 2% Opy, (2€) [Co (Wa + VAG') = Co(Wa)] || o = O(2377+ /757070 40kat5),

I
If we replace above b’ by b’ + 3 (since a = 2 + 0), which corresponds to decreasing by 3 units
the assumption made on ' — b in Proposition 5.2 (i.e., imposing ¥’ < b — 8), we obtain
finally that the contributions of Qo(W) — Qo(W,) and Co(W) — Co(Wa) to (5.9) may be
incorporated into the hg term of the right hand side. We are reduced to the study of

Qo(Wa + VR(Wan + W_2p)), Co(Wa).

To treat the first expression, we use (ii) of Lemma 5.6, which allows us to compute expressions
(3.7) using (3.11). The remainders satisfy bounds of the form (5.20) with us = 3, so may be
incorporated to the hg term in (5.9). We have already seen in the proof of (i) that the O(1)
term in (5.9) is given by (5.8).

The O(v/h) term is computed from (5.19) applied to the different contributions to Q
given by (3.7). We need to compute explicitly only the A-oscillating term, i.e., the contribu-
tions to (5.19) corresponding to p; &+ 2py = 1 and py +2p; = 1 (p1,p2 € {—1,1}). From the
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expression (3.7) of Qg and (5.19), we get a contribution

(5.28) 1-x) (xh_ﬁ)% |dw|% @A(ng — E,QA).

In the same way, using (5.16), we compute the A-oscillating cubic term coming from the
expression (3.8) of Co(W,). We obtain a contribution 1(1 — x)(zh~?)|dw()|? [wa|?wa.
Summing up, we get

Qo(w, w) + VhCo(w, @) = Wap + W_o4
+ \/ﬁ(@gA +wp +w_p + 7:5—3A)
+ hi
where according to (5.17) and (5.20),

1
1,6'4+1

;= 2,0/ +1 ;=
Z8G e ¥ @ [Fl c k% @ P [F]

(if &' is large enough), and where @, is given by (5.10). The contributions w3, W_A, W_3A
have expressions (5.11), for which we do not need to compute explicitly the coefficients ),
. This concludes the proof of the lemma. O

The next step of the proof of Proposition 5.2 will be to deduce from equation (3.10),
and from the description provided by Lemma 5.3 of the right hand side of this equation,
an expansion of Op,, (7§ )w, exploiting that 2z{ + |§|é is an elliptic symbol on the support
of v§. In a first step, we establish some a priori bounds for the components w; of w cut-off
outside a neighborhood of A.

LEMMA 5.7. — Assume that (4.9) holds for k < 5 + Ny for some integer Ny satisfying
(N1—Np)o > 1. Then for any symbol a in S(1), microlocally supported outside a neighborhood
of A, the following estimate holds for k < 5 + No, and any j in J(h,C),

(5.29) 10Dy, (0)Z5wj|| o < Creh®~Okemi—no (23/2 4 pl/2)g=3+

foranyb <b—a <b-—2.

Proof. — Let us construct forany 1 < £ < Ny — Ny, any k < 5 + Ny — £, a family of
symbols in S(1), (b5)o<er<e, vanishing close to A and a sequence (rf’k)jeJ(hvc) with

(5.30) Hrj”“”mo < Ceh? O+t (2972 + h1/2)2—j+b’
such that
¢
(5.31) 7% Opy,, (a)w; = h% | D 25 0p,, (bh)w(™) | + ¥
£=0
where w;e,e') denotes a function defined like w; = ©* jA;?w but with A;? replaced by

another cut-off of the same type. Then (5.31) with £ = N; — Ny implies (5.29) since
h;vl_NU < ho(N1=No) < 1, and since wﬁ”l) satisfies the same L estimates (4.9) as w;.

We remark that to prove (5.31), we just need to treat the case £ = 1 and iterate the formula.
Finally, to obtain (5.31) with £ = 1, we use that, by the symbolic calculus of appendix, and
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since a vanishes close to A, we may find a symbol g in S({z) 1) C S(1), vanishing close to A,
a symbol p in S(1) such that

Opy, (a) = Opy, (q) Opy, (22€ + [€]2) + k] Opy,, (p)
for an arbitrary integer N. If N is large enough, the fact that (4.9) holds implies that
Z5(nY Opy,, (p)w;) satisfies estimate (5.30) with £ = 1 for all j € J(h,C). We are thus
reduced to showing that

(5.32) 7% Opy,, (4) Opy, (22€ + I€]7 ) w;

may be written as the right hand side of (5.31) with £ = 1. We use (4.17). On the one hand,
we get a contribution to (5.32) of the form

z¥ [hj Opy, () (%iﬁj - z'ijﬂ

that forms part of the sum in (5.31) with £ = 1. On the other hand, the nonlinear terms in
(4.17) bring an expression

7% Opy,, (q) [_\/52,%@,1 JARQ(W) — h27 507 ARGy (W) — 2*%h%@*_jA?R(V)].
Let us check that these terms satisfy estimates (5.30) with £ = 1. For the quadratic terms, this
follows from (3.12) (with p = pg, = px, = 00) and from the assumption d; + &, <4y, if
k1 + ko < k, that follows from (4.1). For the cubic term (resp. the remainder) we use (3.15)

(resp. (3.17)) and the estimates of HZk (hDgE)"J”JlVHLOo deduced from (4.9) withd = b—a—0,
b’ < b — a — 0. This concludes the proof. O

We shall use the preceding lemma to give an asymptotic expansion of Ophj (v wj,
assuming that we know a priori that Qo (w, w) admits the expansion given by equality (5.7)
in Lemma 5.3, or that Qo(w, @) + vVhCo(w, @) obeys the equality (5.9) of the same lemma.

LEMMA 5.8. — (i) Assume b’ < b—>5 and that Qo(W) satisfies (5.7). Then there are functions
Wiyop = EJEJ(h o) OFwian,j such that for any k < 5 + Ny, Z*wion is an O(e) element

of h~ 2‘57v+1L°°I2 v +2 [K12| and a function g = ZjeJ(h o) ©59; such that Z%g is an O(e)

~0,b
element 0fh735’€+1+N1 -No B__ [F) for some closed subset F of T*R whose second projection is
1,y
compact in R* and Z* Op,,(z€)g is an O(e) element of h™ 30kt 14n1 - o % [F], so that

1+xf

wan = —i(1 = x)(zh ") [dw(z)] wi
(5.33)
w_gp = —i(1 — x)(zh™ ﬁ)l \fld ()| w3
and for any j in J(h,C)
(5.34) Opy, (78)w; = Vh(wan j +w_24 ;) + hy;.

(ii) Assume that V' < b—8 and Qo (w, @) +'hCo(w, @) obeys (5.9). Then there are functions
w-op Such that for any k < 5+ Ny, ZEwyop isan O(e) element of h~ 20541 LC’°J2 Y3 I:K:tz],
there are functions wgy = ZjeJ(h o) O win,j for £ = —3,—1,3, such that for k S + N,

Z*wep is an O(e) element in h™ 3‘skJrlLo‘)IQb+2 (K], a function g = > jcinc) ©59)
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’

such that Z%g is O(e) in B4k rn - @g’ob [L] and Z* Op,(x€)g is an O(e) element
of k™ k414851 N @(;b,i% [F] so that

Opy, (V8 w; = Vh(war; + w_sn ;)
(5.35) + h(wsa,; + w_p; + w_3a,;)

+ h1+”gj.
Moreover, wiap is still given by (5.33) and
wzn = (1 —x)(zh™P) A3 ldw(z)]> w}

(5.36) w_p = (1—x) (:L'h_ﬂ))\_l |du.)(ac)|2 lwal? wa

w_zp = (1 - x)(zh ) A 3 [dw(z)* @}
for some real constants A3, A_1, A_s.

Proof. — (i) By Corollary A.3 of the appendix, we may find symbols a in S({z)~!),
cin S(1), supported in a domain C; ' < |¢] < Cp and outside a neighborhood of A such

that v§ = a # (2z€ + |€|%) + hY c. Moreover, we may write

(5.37) a= (226 + €]7) 715 + hya
for some symbol a; in S({z)~1). We get
(5.38) Opy, (78)wj = Opy, (@) Opy,, (22€ + [€]? )w; + by Opy,, (c)w;.

Since h; < h?, taking N large enough, we see that assumption (4.9) implies that the last
term in (5.38) may be written as i 2 g; with Hngj HLM = O(h=%279+%) for k < § + N,. By
construction, g; is microlocally supported in a closed set of the form Cjy’ L < e < Co.
Moreover, since by Lemma 5.1 Z%w is in h =%+ QBZ;b_Q[K], we get that Z* Op,, (z€)wa
belongs to h0ki1 B

1,b—

[K]. Since Z* Op,, (z€)wx- is by the same lemma in

o0
W= G (P 4 e B (P,
we get that 7" Op,, (z€)w belongs to h %+ @i;b_z[F] + Rh'Ok Q?Z;b_2[F]. Since
h2~% = h; = O(h?) = O(1), this implies for ||Z;C Opy, (xf)ijLm a bound in
9= b=kt [Q%fﬂ(bfz) T h27j+<bfz>] < Ch~ 41—+ (0-2)
This implies that || Z} Op,,  (2€)g; |, is O (h=%+1273+Y) 50 that Y jesnc) ©;9; brings a

contribution to the g function in the statement of the lemma.

We use expression (4.17) to study the first term in the right hand side of (5.38). The
contribution of

T .
(5.39) Z? [hj Opy,, (a) (§w7 - szj)]
has according to (5.29) a bound of the form

(5.40) Creh? Okrieni=no (b 4 h;h3)279+Y < Cpeht+odheiem—no 2 =itV
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using h; = O(h?). This will give a contribution to g; in (5.34) since the action of Opy, (z€)
on (5.39) admits similar bounds as a is in S((z)~1).

Let us examine the contribution of
541 z¥ [ — Vh2797? Op,, (a)0" ;A"Qo(W) — h277/2 Op,, (a)©* ;AlCo(W)

—27%1h Op,, (a)0* ;A"R(V)

to (5.38). We use expressions (5.7). The contributions of g, g3 to (5.41) induce in (5.34) an
expression contributing to hg;. Actually, they give terms whose L>-norm is O (h=2%+1+12-3+")
Moreover, the action of Op,, (z€) on these terms admit similar bounds, again because (5.41)
contains an Op,, (a) operator in factor, with a in S((z)~1). In the same way, the L>-norm
of the last term in (5.41) (and of the action of Op;, (z€) on it) may be estimated using (3.17)
with d = b’ — o — 0 and the fact that || Z*(hD,)*+?V|, . is bounded using (4.9) (The loss
in 27+(@+0) = (R =28(2+0)) coming from the right hand side of (3.17) is absorbed by part
of the h'/4-extra factor in the last term in (5.41)). This brings another contribution to hg;.
Consequently the only contribution to (5.41) that we are left with is

(5.42) — 752772V Op,, ()07 ;A (n + T a) |.

We shall study this expression in part (ii) of the proof below.

(ii) We assume that Qo + VhCj obeys (5.9) and write again (5.38), expressing the right
hand side from (4.17). The contribution (5.39) brings, according to (5.40), part of the
term h'*?g in (5.35). The same holds for the remainder term in (4.17). We are thus reduced
to the study of the quadratic and cubic terms in (5.41). By (5.9), we have an expression
for Qo(W) 4+ VhCy(W). The term § in that expansion will bring part of the g; term in
(5.35). Consequently, we are reduced to studying
78 [Vh27912 Op, ()07 ;AL (@an + @ -20) |,

(5.43) ‘
7% {h2—1/2 Opy, (a)O* ; A} (s + Wa + B-p + 1’5,3A)] .

We notice first that wy is microlocally supported close to A while Ophj (a) cuts off outside a

neighborhood of that set. Consequently, the w, term in the second formula (5.43) gives rise
to a remainder. For ¢ € {—3,—-2,—1,2,3} and j in J(h, C), set

(5.44) wiy) = ~279/> Op,, ()0 ;Al@pa.

Expressions (5.41), (5.42), (5.43) show that (5.35) holds with wyy ; replaced by wé}\{j . We have

to show that, up to a modification of g; in (5.35), wé}\)’ ; may be replaced by a function wya ;
such that > Jed(h,C) OFwen,j = wea satisfies the conclusions of the lemma.

We write Wyp = Zj,ej(h’c) ©% Wy, and set

~(1 " ~ . it ~
Bpp,y = O AT = Y O Opy,, (p(27777€))Ben -
J'€J(h,C)
Since @Wea,;» = Opy,, (2(€))wea,; for some & in C§°(R*), we may limit the sum above to

those j' satisfying |5 — 5’| < M for some M. This shows that (Z?ﬁx j)j is a bounded family in

—25" 3,6 +3 _a5" 2,b"+1
h 20 LS8 [Kaa] € b b L 205 (K]
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’ /43
when ¢ = +2 and in A~ 3%+ L°°I§’j\b i [K(] if ¢ € {-3,—1,3}, according to the assump-
tions made on wyy . In the expression (5.44) of
1 —j (1
wéA{j =_279/? Opy, (a)wéA)yj,

we insert the decomposition (5.37) of a. Since v§ may be assumed to be equal to one close
to LA, £ # 1, if the support of v, is close enough to A, we may write

1 _1
alea = (€17 = )7t [dw(z)| 2 + hjai]e

for £ € {-3,-2,—1,2,3}. Consequently, (5.44) may be written as the sum of

(5.45) wen; = =27 (0] = £) " dw(z)| 7 O ;AL
and of

_J ~(1
(5.46) —27% 0py, (c* + hyd") @y ;

where cf, d* are symbols, with ¢ vanishing on £ - A.

Let us show first that (5.46) multiplied by v/A when £ = +2 and by h when ¢ belongs
to {—3,—1,3} provides a contribution to h'*7g; in (5.35). Since (Z?Gg,\’j)j is an
O(e) family in h=2%+1 L2 720 +1[K 5] and ¢*2 vanishes on +2A, we see that the L°°-norm
of the action of Z f on (5.46) with £ = £2 is bounded from above by

052_%h_26;c+1 21_j+(b'+1)hj < Csh1_25;c+1 2_j+(b'+1) .

Consequently, when ¢ = +2, if we make Z f act on (5.46) multiplied by vh, we obtain an
element of 72 ~20k+1 %ﬂf [L], i.e., a contribution to h'T7g; in (5.35). In the same way, when
¢ € {-3,—1,3}, using that (Z;?{Eg&j)j is in h_3‘51/v+1L°°I,£21’\burl [K(], we may estimate the
L*>-norm of (5.46) on which acts Z f by

Ce2 2l 31273+ (WD 3 4 ] < Ceh?~30kiigis(V+3),

Again, after multiplication by h, this gives a contribution to h'T7g; in (5.35). Notice that
the fact that Opy, (2€)g = - c yn.0) 23 ©; Opy,, (z€)g; satisfies the same estimates as g, with

v replaced by b’ — 1, follows from the above bounds since [DS\)’ ; is microlocally supported in

a compact set of 7*(R \ {0}).

We have thus shown that Ophj (7% )w; is given by the right hand side of (5.35), with wgy ;
given by (5.45). In particular since |d w| is positively homogeneous of degree —2, we get

1 _1
wen = Y, Ofwen; = (|2 — )7 [dw()|? Dea.
je(h,0)

Combining this with (5.8), (5.11), we obtain (5.33) and (5.36). Moreover, expressions (5.45)
and the properties of @,a obtained in (i) if Lemma 5.3 show that Z*w,, is in the space

’ ~ /43 ~9 /1 3
h—26k+1L°°Ji’§A+2 [K.>] and that wes, £ € {-3,—1,3} belongs to L°°I£2/’\b +s [K¢], and
are O(e) in these spaces. O
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Proof of Proposition 5.2. — Let b/ satisfying the assumption of the proposition.
By Lemma 5.1, Z"w, is an O(e) element of h_5l/c+1L°°fR’b72[K] and Z¥wy. is an

O(e) element of h2 %k B B

)

- _Q[F] + RO B T [F], for 0 < k < 2 4 Ni. We may
therefore apply (i) of Lemma 5.3 which shows that (5.7) holds. This allows us to use (i) of
Lemma 5.8. In that way, we obtain functions w24, in the spaces indicated in the statement
of that lemma, such that (5.6) holds. Writing

w = wp + Z ©; Opy,, (Vi) w;
J€J(h,C)

and using (5.34), we obtain equality (5.5).

We still have to check that Z*w, is an O(e) element in h_25;€+1L°°j2’b' [K] since
Lemma 5.1 was only ensuring that this function is O(¢) in the space h~%+1 L“fﬁ’b [K].
To do so, we must show that

(5.47) |25 Opy,, (226 + |7 Jwa 5| oo < Ceh™2hsrh 27+
We notice that, by symbolic calculus and assumption (4.9)
125 [ Opy, (22 + [¢]*), Opy, (v)] w5 ]

satisfies the wanted bound, since the commutators between the vector fields and Opy,, (e), for
a symbol e, are of the form Opy, (é) for another symbol €. We may therefore study

125 Oy, (10) Ops, (226 + [€]%) | ..
Using the commutation relation
(D, + 2D, Opy, (206 + [€]*)] = i Opy,, (226 +[¢]7)
we see that the above quantity may be estimated from
[Opy, (7a) Oy, (22€ + €15) 25 ws|

for k¥’ < k and 7, a symbol with Supp¥x C Supp va. We use now (4.15), which provides the
wanted bound of type (5.47), up to a similar estimate for

275 Vh||Opy, (72) 25 O, 85 Q0 (W) ..

To study this quantity, we need to exploit the structure of Qo (W) given by (5.7). The remain-
der in the first equation (5.7) gives a contribution bounded by the right hand side of (5.47).
On the other hand,

10pn, (7a) 2} ©7 ;A (@an + B24) |

is O (eh®) since 7, cuts off on a neighborhood of A while w424 are supported close to +2A,
so outside such a neighborhood. This concludes the proof of (5.47), whence the proposition.
O

Let us deduce from expansion (5.5) of w a second refined decomposition of w in oscillating
factors.
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COROLLARY 5.9. — Under the assumptions of Proposition 5.2 with moreover b’ < b—8, we
may write

(5.48) w = wp + Vh(wap +w_op) + h(wss +w_p +w_3p) +h1 T
where wiop, Wiz, wW_p satisfy the conclusions of (1) of Lemma 5.8 and are given in terms

’ ~0,b

of wp by (5.33), (5.36), and where for k < 5 + N, Z*gis O(e) in k= *k+148-N0 B [F] and

/ ~0,b'—%
7% Opy, (2€)g is O() in A~ *Pk+1em-no B 2 [F).

Proof. — By Proposition 5.2, w may be written as (5.5). Consequently, the assumptions
of (ii) of Lemma 5.3 hold and this lemma implies a decomposition (5.9) for
> AMQo(W) + VRCo(W)].

jeJ(h,C)
This shows that the assumptions of (ii) of Lemma 5.8 hold. According to this lemma,
Opy, (fy/c\)wj is given by (5.35). We define wyp = EjeJ(h7C) O wea,; and get (5.48), remem-
bering that we defined wx = >_,c .0y ©; O, (Wa)w; if w = 32, ;0 0y Ojw;. The
expansion in terms of wy, w, follows from (5.33), (5.36).

We have seen in Proposition 5.2, that Z*w is an O(e) element in b~ %1 L[> jX’b/ [K]. We
need a more precise description of this quantity.

PROPOSITION 5.10. — Let wa = 3¢ 7.0y Ojwa,; be the function introduced in Propo-
sition 5.2. There are elements f =3¢ 1, ) ©7 f; where ZFfis O(e) in h™3%+2 L“fg’b/ [K]

’ ~0,b
fork < 5+ Noandr = 3.0 Ojrj. with ZFr of size O(g) in h™**+M-Not1 B [F]
such that

(5.49) Opy, (22€ + [€]7)waj = hy [ f; + hir].
Proof. — We use the definition of wj x = Opy,, (ya)w; and (4.17) to write

Opy,, (22€ + [€]? )wja = [Opy, (22€ + [€]?), Opy, (1a)] w;
— Vh27% Opy,, (4)0™ ;AT Qo (W)
(5.50) S i .
+ h272 Ophj (va) [iwj —iZw; — O ;Aj C’O(W)]
—273h% Op,, (12)0% ;AR(V).
The commutator term may be written h; Op,,  (e)w; for some symbol e in S(1), with support
contained in Supp s (up to an O(h;”) = O(h*) remainder). Consequently Opy, (e)w;
will satisfy the same type of properties as wj ;, i.e., by Lemma 5.1, (Z;C Opy, (e)wj)]. will
be an O(e) family in h‘52+1L°°I?X’bI [K] so that the first term in the right hand side of (5.50)
contributes to h; f; in (5.49).
To study the quadratic and cubic terms in (5.50), we use expression (5.9) for
Qo(W) + vVhCo(W). The remainder § in (5.9) will bring a contribution to h;h27; in
(5.49). The contribution

Vh2% Opy, (1A)07 ;A% (%A + @_op + Vh(Tar + @ + 6*3/\))
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and its Z-derivatives are O(e¢h®) since 4 cuts off close to A, while the terms on which it acts
are supported close to £ - A, |¢| < 3, ¢ # 1. Consequently, the only remaining term coming
from (5.9) is
i X ~
—h272 Ophj (WA)@_jA?wA.
Since
Zhiy = Y ZF@Lwny  isO(e) in h™3% LYY [K]
J'€J(h,C)
we get a contribution to h; f; in (5.49).

The remainder term 2~ %% Opy, (ya)©* ;A"R(V) will contribute to the last term in
(5.36) as it has been seen in the estimate of the last term in (5.41).
Finally, we are left with studying

(5.51) h2% Op,, (»yA)[2w] - szJ]

We use (iii) of Lemma 4.4 to bound the action of Z% Opy,, (22€ + |§|%) on (5.51). We obtain
an L bound of the form

Chz V1Y B T 606060+ byl

k1+ka <k-+1 k1+katks<k+1
Using (4.1) we bound this by Ch; (h% + hj) &r42(v) so, according to (4.9), by
Ch;h~%+2 (R34 hy)277+Y
We obtain in that way a contribution to h; f; in (5.49). O

In the following section, we shall need estimates not only for w, but also for

w® = Op, ((§)")w, wA = Opj, ((©)%)wa,
where £ is an integer 0 < ¢ < % + Ny + b. Let us deduce from Corollary 5.9 an expansion

for w® intermsofwj(\e),E:O,...,g+No+b’.

COROLLARY 5.11. — Under the assumptions of Proposition 5.2, for £ =0, ..., 5+ No+ b’
we may write

650w = off 4 VAR + %) + h(ul a4 ull,) + g0
~0,b —¢
where for any k < min (£ + No, 5 + Ny + b’ —0), Z%¢® s in h™ Virem-no B [F,
~0,b'—0—
pPy(x is in k+14+N1—No and of size in that space an
7" Opy, (w€)g @ is in h~"% B3P and of size O(e) in that space and
¢ , _ _ 14+V2, (o2
wyy = =i(1 = x) (@h™?) 2dw) (dw) " [dw| == (wf)
2
w(_Z%AZ— )(ZL‘h ﬂ) 2dw)*(dw) =2 |dw| 4\[(6%))2
5.53
(5:33) wé?: (1—x)(zh™?)(3dw)(dw) % |dw|® )\e( )
(4) _ (1—x)(:ch /3) dw) 2e|dw| >\21| (f)| —(4)
(_Z:Z)A: X)(:ch ﬂ) 3dw)(dw) 3e|dw| N ( %))3
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where X§, \* 1, A\’ 5 are real constants, x € C§°(R), x = 1 close to zero, with small enough
support.

Finally, in the decomposition

> ey

JEJ(h,C)
ofwf\e) deduced from the one of wy, we may write
¢ 0 1 (¢
(5.54) Opy, (22€ + 1612wl = h; (£ + nir?)
where
(Z?f]@)j is an O(g) family in h*35"€+2L°°IO’b/_[[K]
~0,b'—¢

(Zfry))j is an O(g) family in h™ 14851 - B L.

Proof. — By definition, wy = Op,, ((¢&)~*)w{ and Z*w' belongs to h~0k+1 L=J0Y K.
By Proposition 2.11, we may write
wp = (1 — X)(xh_ﬁ)<dw>_zw/(\e) + hry

’

;= —1b i .
where Z"ry is in h=%+1B_ " [K] and the action of Z* on (1 — x)(zh~#)(dw)~‘w is
in b0k L0 j,(z’b, [K]. We apply Proposition 2.12 to compute powers of wy

(“’/\)2 = (1-x)(zh ’8)2<dw>—2 (w®)? + hr
(@2)" = (1= 0) o) ) @) + b
(5.55) (“’QA) =(1- x)(xh—ﬁ)z<dw>—3Z( (e))23+hr3
|wAi == (xh—ﬁ) <dw>_3£|w | (e) + hrq
’“’A‘QEA = (1= ) (zh ™) (dw) " |ul ["w a0 hr_y
(©1)° = (1= 0 eh™) () (@) + b
where the action of Z* on r, gives an element of B—20k11 %;02,%’_% (K] ifq = +2 and

’ ~ —3,3b' -1 .
of h™3%+1 B [K,]ifqg=3,1,-1,-3.

On the other hand, consider the contributions wga, |g| < 3, ¢ # 1, to the expansion (5.48)
and define w([) ' = op, ((€)*)wqa so that (5.48) may be written

556 w® =w{ + VA(wS)t +w) + h(wlt + w0l +w) + pitog®

where g(©) satisfies the bounds of the remainder in (5.52). We apply again Proposition 2.11
to get an expansion of w !, Since by (ii) of Lemma 5.8,

2,b' 43
ZRwagp isin A2k Lo J T2 [K ),

ZFwgp isin b 3‘SkHL""IZbJFZ[ K|, forg=-3,-1,3,

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1216 T. ALAZARD AND J.-M. DELORT

we obtain that
ggﬁ—(l— (ZL‘h ﬂ) dw) wﬂ,\—l—hr
wé?’l =(1-x)(zh~ ﬁ)

1,6 +3—¢
1. _ )
where Z%r{) ! isin =20k B

0,1

(5.57)
wA+h27“(£)1 qg=-3,-1,3,

[K>] and for ¢ = —3,-1,3,

1,6/ +1—2£
[#4]-

Zkr (f) Visin h=30%+1 8
We deduce from (5.56) that
w® = w%) +Vh(2dw)¥(1 - x) (zh ™) (wan + w_24)

(5.58) +h(1—x) (wh_ﬂ) ((3dw)lw3A + (dw)w_p + (3dw)ew_3A)
+ h1+0'g(2)

with a new remainder ¢(® as in (5.52). We use next (5.33), (5.36) to express wqa from wy,
wy and (5.55) to compute the resulting quantities from wl(f), w A) We get expressions (5.53),
with (1 — x) replaced eventually by some of its powers. As already seen, these powers may
be replaced by (1 — x), up to O(h*°) remainders.

The remainders coming from the ones in (5.55) may be expressed as the product of h3
(resp. h?) with (1 — x)(zh~?) |dw|(2dw)’res (resp. (1 — x)(zh™?) |dw|? (gdw)ire,
¢ = —3,—1,3). By Proposition 2.11, and since |dw| (2dw) (resp. |dw|” (g dw)?) satisfies
(2.15) with (¢,¢',d,d’) replaced by (—2¢ — 2,2¢,0,0) (resp. (—2¢ — 4,2¢,0,0)), we obtain
that the action of Z* on these functions gives elements belonging to

~0,2b'—1—¢
h=2en B

; ~0,b =2
(K] € h™ k1B [K)

;= 1,36 —1—¢ ;=0 —f .
(resp. h=3%+1 B (K] € h3%1 B [Ky]) for £ € {-3,...,3} so that we obtain

again a contribution to g¢. (Notice that the action of Op,,(z¢) on these remainders gives
elements of the same spaces with b replaced by b— 1/2, since they are microlocally supported
in a compact subset of 7*(R \ {0})). This concludes the proof of (5.52).

To prove (5.54), we first write, according to the definition of w/(f) and (2.13), that
wEf)J Opy, (<2j§>e)w/\7j. Making Opy,, (<2j.§>£) act on (5.49), we get for the left hand
side of (5.54) an expression given by its right hand side, modulo a term

0Dy, (20 + [£]%), Opy, ((276)") ] wa s

Since (Z*wy, 7),; is a bounded family in h=3%1 L 7% (K], we see using symbolic calculus,

that this expression contributes to the h; f]@ term in (5.54). O

6. Ordinary differential equation for wy

We consider a solution v of (3.6), satisfying for h in some interval |h’, 1] the a priori
estimate (4.8) for ¥’ < k + 1, with k& < s — a — 1. By Proposition 4.1, we know then
that v satisfies (4.9), and by Corollary 5.9, that v = wvp + w + vy, where w has an
expansion (5.48). Our goal here is to deduce from that and from the equation satisfied by w,

a uniform estimate for ||Op,, ((€)*)w(t and estimates for || Z* Op,, ((€)*)w(t

2 oo g
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which are not uniform, but which are better than (4.9) (i.e., that involve exponents closer to
zero than the 4},).
For0</¢< §+N0 and 0 < k < §+N0—€Wedeﬁne

k,(0) _ k. (¢
(6.1) Wk = (Z¥w( >)0§k,gk

where

w(Z) = Oph (<§>€)w’

as in the preceding section. The estimates we are looking for will follow from an ordinary
differential equation satisfied by W ().

PROPOSITION 6.1. — Under the preceding assumptions, the function w'® satisfies the equa-

tion

(6.2)
1 1

Daw® = 5 (1) (@h™*) [dw(z)|* w®

Vh -8 2 —2¢ ‘ (©)\2 —(0)\2

=i (1= ) (h ) [l (dw) 2 2dw) 1+ V) ()? - 301 - V2) @)’
+ R0 (@) + 0O Pu® + oG uOPTO 1 00 @0)]

+ Wi erO(t, z)

where x is in C§°(R), equal to one close to zero, with small enough support, where k is a small
positive number, where @gé), -3 < j < 3aregiven by

39 (z) = (1 - x)(zh™")|dw|? (dw) =2 [(de)” 36— 2v2) + 1]

(6.3) (dw)2t 16 2

() = (1 - x)(zh™?)[dw|3T) (dw) £#1
for some real valued symbols of order —2¢, Fge)’ and where || (hD, )P Z*r O (t, z) ||LDC is O(¢)
for any integers k,p, £ withk < $ 4+ Nog—£,0 < p < b — 1. Moreover, W*®) defined by (6.1)
satisfies a system of the form

Dth,(Z) = %(1 - %) (xh*ﬁ)|dw(x)|éwk,(€)
(6-4) + VRQEO [z, by WO )

+ hgk,(f) [1_, h; Wk,(é)’Wk,(Z)] + plte gk, (0) (t, )
— where H(th)ka/Rk’“)(t, -)HLcc =0() for 0<p<bV'<¥ -2/ and
K <5+ No—L€—k
— where Q®® is a vector valued quadratic map in (W*©), Wk’(e)) whose components are
linear combination of functions of the form

0(zh=P)®(z) (ZFw®) (252w ®)
(6.5) G(il’?h_ﬁ)@(x)(Zklw(Z))(Zk2@(€))
0(zh=P)@(z)(zFaW) (Z*w?)
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for k1 + ko < k, with smooth functions 6 bounded as well as their derivatives, 8 = 0 close
10 zero and ® satisfying | Z¥®(z)| < Clz|*3(z) =% for any k;
— where €Y is a vector valued cubic map, whose components are linear combination of

quantities
0(zh=P)®(z)(Z¥w®) (Z*20w®) (2% ®)
©6) 0(zh?)®(z)(ZF1w ) (2720w ®) (ZFw®)
' 0(zh )@ () (2" w®?) (2w ) (Z*w®)
0(zh=P)@(z)(Z2FaW) (ZFwW) (ZFw®)

fOl k‘1+k‘2+k‘3 ]{)

Zk®(z )’ < Clz|*=5(x)~* for any k.

We shall first prove (6.2), deducing it from (3.23) on which we make Op,, ((£)*) act. Let
us study first the action of this operator on the nonlinearity.

As in the preceding section, we shall call K or K, compact subsets of 7*(R \ {0})
contained in a small neighborhood of ¢A for ¢ € {£3,+2 41}, by L compact subsets
of T*(R\{0}) and by F' closed subsets of 7*R whose second projection is compact in R\ {0}.

LEMMA 6.2. — Under the assumptions of the proposition, we may write for £ < 5 + No,

> Ap [0 () [VAQu(W) + hCo(W)] |

JE€J(h,C)

= VAL (e ) awlt Y pawy s ) + @)’

6.7 h
7 2020 (@02 [dul (de) 3 dw) A0 (W) + 2 G @)
h ;
+ 31 =0(@h ™) dwlfdw) 7 [[uldul + 2G|
+h3r0

, ~ 0,0/
where for k < 5+ No—2, Z*r® belongs to h™3%k+1+¢ B [F]and /\(i[%, )\(ﬂ are real constants.

Proof. — We apply Op, ((£)*) to (5.9) and write the resulting right hand side as in (6.7).

By (ii) if Lemma 5.3, we know that Z"™@,5, is O(e) in h—%mHLingg [Ki2], s

ZFisap is O(e) in h=2ksenn Lo J20 P30 K]

In the same way Z*, is O(e) in h™ 35k+€+1L°°I3b+ +e[ K,], for ¢ € {£1,+3}.
Consequently, Proposition 2.11 shows that

Opy, ((€))Baan = (1 — x) (wh™?) (2d w) idison + h7),
Op;, ((6))gn = (1 = x) (eh™P) (qdw) gn + b7,

, ~2b'+32 ~2.b'+1
where Z5#) (resp. ZF7")is O(e) in h=2hren1 B [Kio] (resp. h=3%+1+¢ B " [K,]).
We combine this with the expressions (5.8), (5.10), (5.11) of wqa in terms of wa, w24, and
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with the formulas (5.33) expressing w4o In terms of wy . If moreover we compute the powers

of wy, wy from wg), wA using (5.55), we get

Opy, ((6) ) iban = —i(1 — X) (wh—‘*)|dw|2£<2dw> (dw) =2 (W) + hry?,

0D, ((6))@-2a = ~i(1 — x) (zh~?)|dw|? f<2dw> (dw) = @)" + hrlh,

with remainders rgg satisfying again, because of Proposition 2.11, that Z’“rgf% is O(e)
, ~0,b'
in h=2%k+1+¢B " [Ky). In the same way
Opy ((6) ) gn = (1 = x) (zh )| dw| A (gdw)(dw) =2 Py (w?, @{) + hEr,

where P, (wf\),wA ) is equal to (wg)) (resp. ‘w(e)|2w ) resp. }w(£)| wA , resp. (W (Z)) )
ifg = 3 (resp. ¢ = 1, resp.q = —1, resp. ¢ = —3) where )\( ) are real constants with

0,0/
A = 1 and where ZF7{? is O(e) in h™3%k+1+¢ B [K,]. (We used again Remark 5.5 to
replace different powers of (1 — x) (zh™?) by 1.)

This concludes the proof of the lemma. O

Let us study next the action of Op, ((£)*) on the linear term Op,, (z£ + |§|%)w of (3.23),
writing w = Op,, ({¢)~4)w®.

LEMMA 6.3. — One may write, for £ < 5 + No
(6.8)

3 2
Op, ({€)Y) Opy, (z€ + [€]?) Op,, ((6)~*)w® +th0ph(é> )w(e)
S T

- i%|dw|%<2dw>e<dw)_”[(w%))z - (w%))z}

+hldw|? (dw) ™3 [<3dw> ( O (O 4 14 (@ 5\0)3)
ol ol
+ hitor®

for some real constants u( ) u(z)l, e 3 and where for k < 5 + Ny — £, Z*r® belongs
0./~ 1

10 h™ker1en - Q?oo [F].
The proof of the above lemma will use
LeEMMA 6.4. — We may write for £ < 5 + Ny
(6.9) Opy, (€ + €] )w’) = %(1 —x) (zh™?) [| dw|zwl? + ihwjf)] + it

’

/ ~0,b
where for k < 5 + Nog — ¢, Zkry) is in h=4%+2+¢ B [L].
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Proof. — We write remembering (2.13)
(6.10) Opy (26 +1¢]7)w’ = Y 2801 0p, (2 +[¢]?)wl).
jeJ(h,C)

Let us show that we may write
1 1 1 1.\2
Opy, (2€ + [¢]*) = 5ldw(@)|% + Opy, (el)(Ophj (22¢ + |€|2))
(6.11) +ihj Opy, (e2) Opy,, (22€ + |€]2)
— ih; Opy,, (e1) Opy, (1€]7) + h Opy, (e3)
where e; are symbols in S(1, K), for some large enough compact subset K of T*(R \ {0}),
satisfying
1 1
(6.12) erla = —5ldw(@)|"=.

Denote a(z, £) = z€ + |¢|2 and take

a(z,é) —a(z,dw
e1(z,§) = (2,4) (; 5 )
(22¢ + [¢]*)
A direct computation shows that the numerator vanishes at second order on A, so that the
quotient is smooth, and that its restriction to A is given by (6.12). If we set

e(z,&) = 2x€+ € |%, we obtain by symbolic calculus
eH#e=e?— th;jO¢edye + h?é
for some symbol €, so that by an immediate computation
(6.13) e® = e # e + 2ihje — ih; |¢|* — h2é.
On the other hand, by symbolic calculus eje? = e; # e® + ;e # e + h?& for some symbols
e, ¢ in S(1, K), so that taking (6.13) into account
ere’=e #eH#He— thjel # |§|é +ihjes # e+ h?eg,

for new symbols ey, e3. Since e1€? = a(z, &) —a(z,dw) = &+ |§|% -3 |dw(a:)|%, we obtain
(6.11) by quantification.

Letususe (6.11) to show that (6.9) holds. Actually, the contribution of the first term in the
right hand side of (6.11) to (6.9) gives the |dw|% term in the right hand side of (6.9). (Again,
we may insert a cut-off (1—x) (zh™?) as w, ; is microlocally supported on a compact subset
of T*(R\ {0}) and j staysin J(h, C), if we accept some O(h°°) remainder.) The contribution
of the last but one term in (6.11) to (6.10) may be written

. % e £ . 1 £
—ih Y ©50p, (e1)Opy, (I€]* )wl); = —ih Opy(e1) Opy, ([€]7 Jwll.
jeJ(h,C)
By Proposition 2.11 and (6.12), this is equal to
%h(l -X) (mhiﬂ)w/(\é) + h2r§2

/ ~ =10 ..
where Zkrﬂ belongs to h=%k+1+¢B__" [K]. Actually noticing that e (z, &) = |z|e; (o 121%€),

and that (9205e1)(£1,n) = O(|n|=*~1#1), |n| — 0 and |n| — 400, one checks that e; (z, )
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satisfies (2.15) with (¢,¢',d,d") = (—1,0,—1,0) so that el(x,£)|§|é obeys these estimates
for (¢,¢',d,d) = (—1,0,—1/2,0). Since ka%) is in h_6;v+1+fL°°jX’b/[K], the above
statement holds. Since for j € J(h,C), 27 > h?(1=9)_ the remainder may be rewritten as
the product of h**° with an element whose Z*-derivatives are in h~%k+1+¢ %Z;b/ K], i.e.,
contributes to h1+"r§e) in (6.9).

We are reduced to showing that the contributions of the second, third and last terms

in the right hand side of (6.11) provide remainders. This is evident for the last term as
Z%h? = hh; = O(h'T7). Using (5.54), we may write the sum of the two remaining terms

(614) 1 Opy, (1) Opy, (206 + [€17) (117 + hir(?) +ih2 Opy, (e) (17 + 1Y),

)

/ ’ ’ ~0,b
Since (Zkfm) is O(e) in h=3%k+2+¢ LTV [K] and (Zkr]@))j is O(¢) in h™*0r+14+e B
)

[L],
contribution to the first one induce in (6.10) a contribution

that may be included in the h““’ 9 remainder term of (6.9). On the other hand, the fact that
(Z’“f]@)j is O(e) in h=3%+2+¢ L IOV [K] implies that Z* Opy,, (2 + €] 5)]2@ belongs to

the last term as well as the r(

, ~0,%/ ,
an e-neighborhood of zero in h=3%+2+¢ (3 + h;) B, [L]. Consequently, the first term in

(6.14) induces also in (6.10) a contribution forming part to the h”"r( ) term in (6.9). This
concludes the proof of the lemma. O

Proof of Lemma 6.3. — We notice first that
2

(615)  Opy ({6)%) Oy (€ + [€2) Opy (1€)™) +ith Opy, (553 ) = Opy (a€ + ).

@)

We make this operator act on the expression of w(® from w given in (5.52). The action

of Opy, (z€ + [¢] %) on w A) has been computed in Lemma 6.4. Let us study

Opy (w6 + [¢1%) (VR(w} +w,)) .

One may express wﬁf; A from w/(\), E%) by (5.53). Since, according to Proposition 5.2,

Zkw (e) is in h—5é+1+eL°°JXb [K], it follows from Proposition 2.12 that Z* (w/(f))2 (resp.
Zk(w (e)) ) belongs to h~ k14 L2 JO92Y' (K] (resp. b= 2k+1+¢ L0 JO2 [K_,y)).

We apply next Proposition 2.11, with a replaced by (z£+|¢|2)(2 d w)(dw)~2| d w|. Since,
because of the fact that wﬁ A 1s microlocally supported close to £2A, we may assume that

z€+ € |% is cut off close to this manifold, we see that the above symbol satisfies (2.15) with
(6,0,d,d)=(-2+2¢,-2¢,1/2,0) or (—1 + 2¢,-2¢,1,0). It follows from (2.17) that

Vi Opy, (2 + [€]2) (wSf +w),)

(616 = — VA =) @dw)de)H dult [w)” - @])’]
+h2pr®
2,2b / ~0,b

where Zkr® is in h~20k+14¢ é?oo (L) C h=2%+1+¢ B [L).
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In the same way
(6.17)
hOpy, (a6 + [¢12) (wS) + 0} +w'%,)
= hldw|¥(dw)2[@Edw) (1 (@) + 1 @P)") + (dw)n [l )]
+ h2r®

’

, ~4.3b / ~0,b
with Z*r® in h=3%+1+¢ B [L] C h=3%+1+¢ B [L] and some real constants p{, 1.

Finally, since the action of Opy, (z€+ |¢]2 : ) on the remainder g(¥) of (5.52) gives a function

7 such that ZFr® is in h~*0k+n1-No+14e % E [F] we conclude, summing (6.9), (6.16),
(6.17) that (6.15) is given by formula (6.8). O

We may now prove Proposition 6.1.

Proof of Proposition 6.1. — Let us compute

2

Dw® = D, Oph((ﬁ) Jw = ilh Op,, (é>
According to (3.23) this is the sum of —%hw(f), of (6.7), of (6.8) and of a remainder
h3 RO (V) where Z* RO (V) is in %l;o (Notice that by definition of w, we may always insert
on the left hand side of (3.23) a cut-off Eje,(h’c) A;? for some large enough C, so that
the sum of quadratic and cubic contributions is really given by (6.7).) Remembering the
expression (5.52) of w® in terms of wf\[), we may write

) ® + Op, ((©)) Dyw.

—%hw“) = —%h(l -x) (xh_ﬁ)w/(\é) +hir®
, ~ 0,5’
with ZFr(0) in b~ 4%+ 51 - No+1+¢ B, [F]. (We used again that the microlocal support proper-
ties of w'{? allow to multiply it by some cut-off (1 — x) (zh~?) up to an O(h>)-remainder.)
We obtain
(6.18)

th(@) —

| —

(1 - ) (zh™?)|dw|*w}

—i?(l =0(eh ™) dwl} (2dw)(aw) [+ V) () + (V2 - 1) (@)’

h

2

+ 5= (@n) dwl dw) ™ [Bdw)’ (1 (i)’ + G @)°)
+ (o)l Fwf? + () uGwl @} ]
+ R R(V)

. 4 -1 ¢
where ZFR(V) is O(e) in h™*k+Ni-No+14¢ R ~2  and where ué) are some new real
constants.
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We express next w A) from w® inverting relation (5.52), i.e., writing, taking (5.53) into
account,
(6.19)

w® = w® 4+ i%(l —X)(zh %) (2dw)* (dw)~¥|dw| [(1 +V2) (w®)? + (1 - \/5)(@“))2}
+ h|dw|*(1 - x)(zh™7) [F:(f) (dw)(w([))3 + Fge)(dw)|w(z)|2w(£)

+ T o) + T dw) (@0)?]

+ h1+0g(l)7

where ZFg(® is in b~ 40k v - vo+1+e %ZO, and where T'{")(¢) is a symbol of order —2¢, with

3—2\/§>

ri9(¢) = (20)*(¢) ( .

We plug this expansion in (6.18) to get (6.2). The remainder satisfies the conditions of the
statement of the proposition if we assume that 40}, x _n, 4110 < %, 0 that we may take
Kk=o0/2.

We prove now (6.4) by induction from (6.2).

ol
2

To deduce (6.4) at order k from the similar equality at order & — 1, we notice first that the
action of Z on the quadratic (resp. cubic, resp. remainder) terms of (6.4) at order k — 1 gives
contributions to Q%) (resp. i?k’(é), resp. %k’(l)). Moreover,

[Z, Dy — %(1 ) (xh—ﬁ)|dw(x)|%]

(D~ 5= X)) dw@)?)

+ 2 (ahP) (oh ) [ dw(a) .

The product of the last term with W*~1:(9) may be computed from expressions of the form
h=PT (zh=P) Z¥ w(® where k' < k — 1 and T is in C§°(R*). We just have to check that such
terms contribute to the remainder in (6.4). Because of the expression (5.52) of w(®) in terms
of wf\[), we see that we need to check that for p < b”

(6.20) H(th)P[ (@h=?) 2" w }H O (h1+7+5).

(The contribution coming from the remainder in (5.52) satisfies the wanted bound as we

assume after (4.2) that 8 < /2.) We remember that v = > jeamo) ©; wA *j» Where w/(\e)J

is microlocally supported for z in a compact subset of R*, so that

P(eh~?) 25w = 3 Th?)z" (11 (24a)e5u)
j€J(h,C)

for some I'; in C$°(R). This shows that the sum is limited to those j for which 27 ~ A28,

Since Z’“lwl(f) is in b0k +et Loojo’b/ K] according to Proposition 5.2,

037w = O~ iscmzmse?),
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Using that 2/ ~ h=28, we bound 29+ < 279+¥" pO/ 101 tA+5+2 gince the assumption on b
relatively to b’ implies that 28(b' —b") > 6; , , 1 +K+6+2,a88;,,, 1, K, B are small enough.
Consequently, we get (6.20) for all integers p < b”.

This concludes the proof of the proposition. O

PROPOSITION 6.5. — Let Ty be a large enough positive number, k a small positive constant,
Co > 0.
S

Let ¢ be an integer, with £ < 5 + Ny. Assume given a function (t,z) — r9(t,z) from a
domain [Ty, T| x R to C, satisfying for p < b",

sup [(hD,)Pr9(t,z)| < Coe

forany t € [Ty, T[. Assume given a solution w® : [Ty, T[x R — C of equation (6.2), such that
|w® (Ty, z)| < Coe for any .

Then there are g > 0, C; > 0, depending only on Cy, such that for any € 10, &¢|,

(6.21) sup [[w®(t,)|| . < Cie.
[ OvT[
Moreover, if we assume that r©) is defined and satisfies the above assumption on [T, +0o[ x R,
then w®) is defined on [Ty, +o0o[ x R and there are a continuous bounded function a:: R — C,
vanishing like |z|2"" when x goes to zero, (t,x) — p(t, x) a bounded function on [Ty, +oo[ x R
with values in C and x > 0 such that
(3

¢ . 2
(6.22) w(t,z) = ea(r) exp [4|m|/ (1 —x)(rPz) dr + ég% logt| + et *p(t,z)
To |z

where x € C§°(R), x = 1 close to zero.
REMARK. — We may write (6.22) on a more explicit fashion. Assume that b” > x/(203).
The contribution of the first term in expansion (6.22) localized for |z| < Ct="/ (26) may be

incorporated to the remainder, because of the vanishing of « at order 20" at z = 0. On the
other hand, if |z| > Ct=*/(¥") our assumption on b” implies that |z|~1/# < C~1/Ft, so

that, if C is large enough,
t +oo
/ x(Pz) dr = / x(mPz) dr.

TO TO
If we define
@) =a@en |- 7ot~ 1t [ () ar)
alz) =alz)exp | ————To — — x(m7x)dr
4| afz| Jr,
we obtain
(6.23) w(t,z) = ca(x)e i + iaz la(@)/” logt| +et™"p(t, x)
. = X — R
’ = p 4|z| 64 |z|° & 2L

for a new bounded remainder p.
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Proof. — We shall establish the proposition performing a normal form transform on
equation (6.2). Denote by & the space of continuous bounded functions on [Ty, T[xR. Let xq
be in C§°(R), xo = 1 close to zero, Supp xo C {z; x(z) = 1} and set

O =w® 4 2%(1 — xo0)(zh™?)|dw|(2dw)(dw)~2 [(1 +v2) (w(‘e))2
+(1-v2) (@@))2}

+h(1 = x0) (zh ") " dw? [ M7 (dw) ()" + MY (dw) (@")*

(6.24)

+ MYQ(dw)|w® 5]

where MZEZ)(C) are symbols of order —2¢ in ¢ to be chosen, p = —3,—1, 3.

() )
We consider the polynomial map ®: (w ( e)) — (f(£)> defined on @. For h = ¢t~! small
w

enough (i.e., t > Ty large enough), this is a local diffeomorphism at zero in &. The inverse

(9] ()
&1 sends (f([)> to <Z ( 13)) , where w(®) may be expressed explicitly as

w® = 5O (1 ) (ah )] dwl 2w () 1+ VE) (70
+(1-va)(FY)’]

+ h|dw|*(1 = x0)?(zh ™) [Mg(dw)(f(‘))g

_|_

(625) 3 —82\/§<2 dw>2£ <d w>742}f(f) |2f(f)

+ M (dw)| O FY
+ T (dw) (f“’)3]

+ AR, (2, h; £O, TY)

. .\ —=(0)y . . .
where k is some positive constant, where Ry (x,h; fOf ( )) is some analytic function

of ( f(e),f(z)), vanishing at order four at zero, with bounds uniform in (z,h), and
1\7,5“(4) = —M,Se) Q) + Ff,(C), p = —3,—1,1 for symbols I"f; of order —2¢, independent
of M!.

P
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We compute D, f©) from (6.24), expressing in the right hand side D;w®, D,w®) using
(6.2). We get

(6.26)
th(f) — %(1 -X) (xh_ﬁ)|dw(m)|%w(€)

+ i%(l = X)(zh )| dw(@) [} 2dw)(dw) " [(1+ V) () + (1 - v2) (@9)]

—_

5

+ h(1—x)(zh™ ”6 ) dw(z 2{ (dw) 2’Z|w {w(e)

[\D

3
+<2 (dw)+1"(€ dw) (l) ( (dw)—l—F(z dw)|w(z)|2w(2)

Qaw) + r“><dw>)( )]

(3
2
+h1+"‘( O(t,2) + Ry (2, hyw' (Z)))

where T (¢) are symbols of order —2¢ in ¢, that depend only on the coefficients of (w(e))Q,
(w(z))s, ... in the right hand side of (6.2), where (¥ is the remainder in (6.2) and where
Ry (z, h;w®,w®) is some polynomial in (w®,w®)), vanishing at order 2 at zero, with
uniform bounds in (z, h). We express w®) in the right hand side of (6.26) using formula
(6.25). The quadratic terms in the definition (6.24) of () have been chosen in such a way
that the quadratic contributions in the right hand side of the resulting expression for D, f(*)
vanish. We get

Df® = 2(1 =) (eh™?) | du(z)| £
(1 =) (™) dwla)]F | Jawh | 7O 10

+ (MO (dw) - 7 (dw) ) (£©)°
6 (MO (dw) - T3 ( ))(f)

(-
(-2 f&‘;(dm) 7y
(

+ b2 (pO (&, 2) + Ry (2, by £, f“)))

M“l) ¢ )|f“ s

~ (¢
where I 1(, )(C ) are new symbols of order —2¢ that do not depend on MZSZ), and where R; is

a new analytic function of (f (Z),f(e)) vanishing at order 2 at zero, with uniform bounds
in (z, h).

We choose now the free symbols M,Se), p = 3,—1, —3 introduced in the definition (6.24)
of f¥) so that the coefficients of (f (e))g, | £ |2f£ and (?(z))3 vanish. In that way, we are
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reduced to

DO = %(1 — ) (zh )| dw(z)|* |1+ |d:)|2<dw>—2e’f(e)}2 £

(6.28)
+ ¢ 1mp) (t,z) + t7 17 "R, (a:, h; f(e)’?(f))

where || (hDy )P Z5r®) (t,z)||, . is O(e) forany p < b”, k+£ < § 4 No. It follows from (6.28)

that |0,] £ |2) < (Coe+Chl f® ‘z)t**"‘ aslong as | f(¥)| stays smaller than 1. Since at time

t =To, |f¥| = O(e), we obtain that | f*) (¢, )| < C{e for some constant C{ > 0, as long

as the solution exists. Using expression (6.25) for w® in terms of f(), we get (6.21). If r; is

defined for t € [Ty, +-00[, we get that f(©) and thus w(® is defined on [Tp, +oo[ x R.
Let us prove the asymptotic expansion for w. If £ < § + Ny, we define

t
2

Oy(t,z) = %|dw(m)|%/ (1—x)(7’ﬁx) [1—}— M(dc@*%v(z)(ﬂm)\ dr.

To

Then (6.28) and the uniform a priori bound just obtained for f) show that

d ) 1k
pn [f(e)(t,x)exp [— z@g(t,x)H = O(at ! )
uniformly for z € R. It follows that the uniform limit when ¢ goes to +o0o of
FOt, ) exp [ —iO(t, 2)]

exists and defines a continuous function eay(x) on R, which is O(e) in L>°(R). Moreover

(6.29) Hf(@) (t,z) — eau(z) exp (1O (t, z)) ||Loo =0(et™), t— +oo.
We write
O(t, ) = %|dw(x)|é /TO(1 —x)(rPz) dr
+ 51 =0 ()| dw(@)|F {dw(@)) ™ |ar(@)| logt
(6.30) - S 1= (1) dw(@)|F (dw(@) o) log Ty
+ 5 [ roax (r2) ldw@)? (du@) ™ la@) 22T dr
To
+3 =0 () e det) (O - leoutol) T

We notice that |dw(z)|? (dw)~2¢is O((z)~5) if £ > 5/4 and TPzx/ (%) |dw(z)|? (dw(z)) 2
isO(r=P(z)=%) if ¢ > 3/2.

These bounds and the estimate |||f®) |2 — ea’|,. = O(* ") that follows
from (6.29) imply that the last three terms in (6.30) may be written as €2y (x) +&? Ry(t, ) for
some continuous function I'y(z), which is O((z)~°) and some remainder R(t,z) satisfying
|R(t,z)| = O(t~*(z)~5) (assuming 0 < x < (). Modifying the definition of that remainder,
we get finally

Nl=

/t (1 —x)(7Pz) dr

To

Ot x) = % |[dw(x)]|
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g2 5
+ < ldw(@)]? (dw) ™ on(z) logt
+&°T(z) + *R(t, z)

when ¢ > 3/2. It follows from this and from (6.29) that

(dw)~*logt

FO(t,z) = edp(z) exp er'/ (1—x)(? )dr+—e 2 [Ge(@)

(6.31) T 64" |z

+ et " p(t, )

where ay(z) = ei52r(’)ag(x) and where p(t, ) is uniformly bounded. If we express w(®)
from £ using (6.25), we conclude that the same expansion (6.31) holds for w® (with a
different remainder). Let us compute w(t, ) = Opy, ((€)~¢)w®). The action of Op,, ({¢)~*)
on the remainder gives a term of the same type, if £ is large enough. On the other hand,
by the expression (5.52), (5.53) of w(® from w%) (and the converse expression), we get that
Op;, ((€))w = Opy, ((€)~*)wa up to a remainder bounded in L*°(dz) by Cet™". Aswj is
in =01 JP o [K], Proposition 2.11 applies and shows that Op,, ((f )~“)wa may be written

as (dw)~fw, modulo a remainder in h'~% QB [K] C ho % @oo [K], which is O(et™*)
in L* for small enough x > 0 since by (4.2) §; < o/8. Using again the expression of wy
from w deduced from (5.52), we deduce that

Hw(t, ) = ([dw)~w @t .)HL — O(et™").
If we define a(z) = (dw)~*@,(x) with £ equal to b, we obtain a function continuous and

bounded on R, vanishing like |x|2b” when z goes to zero and such that w(¢, z) is given by the
asymptotic expansion (6.22). This concludes the proof. O

We prove now a statement concerning the Z-derivatives of w(® . Let (A})k>1 be asequence
of positive numbers satisfying Ay > Ay + Ay + Ay if ki + ko +ks =k, kj <k,j=1,2,3
and A} large enough relatively to the constant Cy in (6.21).

PROPOSITION 6.6. — There is a constant Cy > 0 such that, if we set gjc = Alle?, for any
k, £ withk + ¢ < 5 + No — 2, the solution w® of (6.2) satisfies

(6.32) 125w O ¢, )|, . < Coetds.

Lo

REMARK. — The gain in (6.32), in comparison with (4.9), is that the exponents gfe depend
only on the size € of the Cauchy data and not on the exponents J; that are used in the
L?-estimates. In particular, taking e small enough, we may arrange so that ), < d.

Proof. — We apply a normal forms method to remove the quadratic terms in (6.4).
For (k, £) satisfying k + £ < $ + Np, we define a new quadratic map Q*© |z, h; W*(® e
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in the following way: The components of this map are defined taking the same linear com-
binations as those used to define the components of Q*'(¥) from (6.5) of the quantities

20(zh=")®(z)

(251w ®) (250 ®)
(1= x)(zhP) |dw|?

(6.33) ~20(ah ") () - (ZFw®) (ZF2w®)
(1 —x)(zh=5) |dw|?

3(1 = x)(zh ") |dw|*

If we make act D; — (1 — x) (zh™7) |d w(z)|? on each line of (6.33), we see that we obtain,
using (6.4), the corresponding line of (6.5) and the following contributions:

— Quantities of the form VhE

have the same structure (6.6) as e,
— Quantities given by the product of & and of homogeneous expressions of order 4 in

k,(£ — . k(£ .
( )[a:,h;W’“(Z),Wk’(Z)} for cubic forms € @ which

(ijw(f)’zkj@(f))’ i+ + ks <k

with coefficients depending on z which are O(h~75). If we use that Z*iw(®) satisfies the
a priori estimates (4.9), we see that these contributions may be written as hatr Rk
for some x > 0 and a bounded function R,

— Contributions coming from the remainder in (6.4) or from the action of D, on the cut-
offs in (6.33), that may be written also as h2 t#R*:(®).

Consequently, if we set for k + £ < 5 + N,
Wk — Jre0) _ /pgh® [x, h; Wk,(z)’W’%(f)]’
we obtain that W satisfies bounds of the form (4.9) and solves the equation
(634) (D, - %(1 —x)(wh™P) [dw] F ) RO = hEHO [, b @, O] 4 g ©
where %) is a new cubic map given in terms of monomials of the form (6.6) and

RO q uniformly bounded remainder. Notice that, up to a modification of A
may replace W+ () by W+ () in the argument of &%)

w¢E

Assume by induction that for given k,¢ with k + £ < 5 + No, £ > 2, (6.32) has been
established with k replaced by k — 1. Then W*=1(® and W*=1.( are under control, and we
need to obtain (6.32) for the last component Z*w® of W* () or equivalently, for the last
component W: O of WO, We sort the different contributions to

—~ :k1(£)
(6.35) gh® [m B RO W]
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On the one hand, we get terms given by expressions of the form

6(ch™)B() T T OO
=k,(£)
Tk Ok
(6.36) G(wh ﬁ) kl( )sz( )Wks
: =k, (£)=k,(¢)
Tk
G(wh ) kl( )sz Wi,

_,@ ! ,(Z):k,(e):k,(f)
0(zh ") @(2)W,, Wy, Wy,

where 0, ® satisfy the same conditions as in (6.6), so are bounded since £ > 2, and where two
among k1, ks, k3 are zero and the other one is equal to k. We call F' the sum of contributions
of that type, so that

|F(t,2)| < C|[Wyt, (WOt 2)).

’ ”L

Proposition 6.5 gives a uniform estimate for ||w(£) so also for

M s
Wl = w® — VaQh© [x by WO T “)}
We conclude that for some constant B > 0, depending only on the constant C; in (6.21),
(6.37) |F(t,2)| < B2|W; O (t,2)).
On the other hand, (6.35) is also made of terms of the form (6.36) with
k1 +ko+ks <k, kikeks<k.

The assumption of induction, together with the inequality between the constants A; made
in the statement of the proposition, imply that the contribution G of these terms satisfies

(6.38) |G(t, )| < Ce3%.
We deduce from the equation for the last component W: O of W) given by (6.34)

t
i . ~ d
WEOt,2))* < |[WEO (T, 2)|? +/T \F(r,)||[W O (7, 2)| —TT
0

t
— d
+/ |G(r, 2)[|[WE O (r, )] =
To T

¢ dr
+ [ REO )W O] T

Using (6.37), (6.38), and the fact that at t = Tp, W,f’“) (Tb, -) is O(e) we deduce that

dr

t
WOt )] §C€+B€2/ 5O (7, 29) &
To T

t t
~ d
+C52/ T(sk_l dT+C€/ TTH
Tg TO T

If we use Gronwall inequality, and assume that the constant Ay, in the definition 5 = Age?
of &}, is large enough relatively to B, we deduce from (6.39) that

(6.39)

|W,f’(£) (t,z)| < C'et’
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when k + £ < 5 + Ny, £ > 2. By definition of f/IV/,f ’(Z), the same inequality holds for Z*w(®.
Since w=? = Op, ((€)"2)w®, we conclude that ||Z*w®(t,-)||, .. is O(et’*) when
k+ ¢ < 5 + No — 2. This concludes the proof of the proposition. O

To finish this section, we deduce from the results established so far the proof of Theo-
rem 1.6. This will conclude the demonstration of our main theorem.

Proof of Theorem 1.6. — Wenotice first that it is enough to prove the following apparently
weaker statement: Assume that for some constants By > 0, Ag > 0, any ¢t € [Ty, T[, any
€€ ]071]) anyk S S1

M) (t) < Byet®, N&O(t) < Ve < 1,

(6.40) iy
It Yo + NDe 2t | ey < Aot 4%,

Then, (1.20) holds.

Actually, if the preceding implication is proved with p > ~y, and if we assume only (1.19),
then (6.40) holds true on some interval [Ty, T"], T > Ty taking Ay large enough in function
of Ty (because the last condition in (6.40) follows then from the second one, taking 7" close
enough to Tp). We conclude that (1.20) holds on [T, T”], and taking € < ¢}, small enough
so that eBo, < Ao, we see that, by continuity, (6.40) holds on some interval [Ty, T"] with
T" > T'. By bootstrap, we conclude that (1.20) will then be true on the whole interval [Tj, T7.

Consequently, we have reduced ourselves to the proof of the fact that (6.40) implies (1.20).

Recall that we have fixed in (4.3) large enough numbers a,b. We introduced also at
the beginning of Section 4 integers Ny, N; and we assumed in Proposition 5.2 that
(Ni1 = Nog — 1)o > 1. Letus fix y € Jmax(7/2,b),+oo[ \ 3N, and assume that Ny is
taken large enough so that Ny > 2 + 12—3 We define
(6.41) 31:§+N1+1, sozg
where s is an even integer taken large enough so that the following conditions hold

+ No—3 —[1]

1
(6.42) §> 81 > 89 > 5(5 + 27)
and that moreover
1
(6.43) S1 Ss—a—i.

We set p = sg + . It follows from equation (5.2.157) of the companion paper [5] that if
Gy NSO = C(N,(,SO))N;SSO) is small enough, we have for any k£ < s;

1Z5 ()| o + 1Dzl Z¥6(0)| osmy < Bact™

for a new value of the constant By. The smallness condition above is satisfied for e < g <« 1
using the second estimate (6.40). Since we have set at the beginning of Section 3

u(t,z) = |Dz|% ¥+ in and u(t,z) = %v (t, %)

it follows, denoting by the same notation Z the vector field in (¢, z) and in (¢, §)-coordinates,
that
|(hD2) Z¥ v(t,)|| ., < Baet
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for k' < s1,f < asince s; +a < s — % This, together with the definition (4.5) of F,
shows that the second condition in (4.8) holds with & = s; — 1. The first condition (4.8)
holds because of the second estimate (6.40) and the fact that p > v > b. Consequently,
Proposition 4.1 implies that (4.9) holds for any £ < s; — 1 = § + Ny, with constants A,
depending only on By in (6.40). The assumption (5.1) is thus satisfied, and since we assumed
(N1 — Ny — 1)o > 1, we may apply Proposition 5.2 and Corollary 5.9 which provides
development (5.48). This development is the assumption that allows one to apply the results
of Section 6: in particular inequality (6.32) will hold, with a constant Cy depending only on
the constant B; of (6.40) (and of universal quantities). If B, is taken large enough relatively
to By and if B. is larger than the constant A” introduced in Proposition 6.6, we
deduce from (6.32)

so+[v]+1

L7k 1 B! €?
|| (h82)* Z*w(t, -)||LO° < §Booet o0
for k+ ¢ < so + [y] + 1 (since 5 + Nog — 2 = so + [y] + 1 by our choice (6.41) of sp). Coming

back to the expression of u = | D, | 3 1 +1in from t~2v,and using that by definition p = so+-y
this will give the bound

1 :
(6.44) N(t) < 5Boost—%+3w62

if we prove that in the decomposition v = vy, + w + v, the contributions vy, and vy satisfy
also a bound of the form

1 ;2
(645 125080, g+ 125080, s < 2 Bt

if k < sq. Since our assumption (6.40) implies that (4.8) holds (with constants Ay depending
only on By), for ¥’ < s1, we deduce from (4.5) and the definition (3.19) of vy, that

||ZkUL(t, ')HL2 S EAkh_ék, k S S1.

Since vy, is spectrally supported for h|¢| = O(h?(1=9)), we deduce from that by Sobolev
injection that

(6.46) ||Z v (t _O(ghféwéfg)

e

with constants depending only on Bs, which gives for v, a better estimate than the one (6.45)
we are looking for (since vy, is spectrally supported for small frequencies, estimating L or
C?~* norms is equivalent).

Consider next the vg-contribution. As (4.9) holds for ¥ = s; —1 with constants depending
only on By, we may write for any j > jo(h,C), any k, £ with k + £ < s; — 1,

| AL (WD) ZF v (2, < Ce27I+bp 0%k,

Mz

This holds in particular for k + £ < so +v+ 1lasso+v+ 1 < s; — 1 by (6.41). Since vy is
spectrally supported for |h¢| > ch™?, we conclude that

(6.47) | Z* v (¢, < Ceh® =% < Ceh?®~%

||Cp k

with a constant C depending only on Bs, as we assumed in (4.3) that b6 > 2. This largely
implies estimate (6.45) for vy, and so concludes the proof of (6.44).
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We thus have obtained the first inequality (1.20). We are left with showing the second
estimate. This follows from (6.21) that holds for £ < § + Ny, so for £ < so + v + 1. This
concludes the proof of Theorem 1.6. O

FINAL REMARK ON THE PROOF OF THEOREM 1.4: In Section 1.3, we did not justify the
asymptotic expansion (1.12) of u(t, z) = ﬁv(t, £). This follows from (6.23), since we have
seen in the proof above that in the decomposition v = vy, + w + vy, vz, and vy are O(et ")

for some k > 0 (see (6.46) and (6.47)).

Appendix

Semi-classical pseudo-differential operators

We recall here some definitions and results concerning semi-classical pseudo-differential
operators in one dimension. We refer to the books of Dimassi-Sjostrand [33] Martinez [52]
and Zworski [70].

Let h be a parameter in |0, 1]. An order function m is a function m: (z,§) — m(z,§) from
T*R (identified with R x R) to R, smooth, such that there are constants Ng € N, Cy > 0
with

m(z,€) < Co(1+ |z —y| + |& — ) "m(y, )
for any (z,€), (y,7) in T*R.

DEFINITION A.l. — Let m be an order function on T*R. One denotes by S(m) the set of
Sunctions a: T*R x 10,1] — C, (z,&, h) — a(z,§, h) such that for any (o, 8) in N x N, there
is Cop > 0, and for any (z,§) € T*R, any h in ]0,1]

020 a(w,€,h)| < Capm(z,€).

If (up,)p, is a family indexed by h € 10, 1] of elements of ¢'(R), and a € S(m), we define a
family of elements of ' (R) by

(A1) Opp(@)un = 5 /R ¢ a(z, he, W) (€) d.

If m = 1, Opy,(a) is a bounded family indexed by h € ]0, 1] of bounded operators in L?(R).
If moreover £ — a(x, &, h) is supported in a compact subset independent of (z, i), the kernel

of Opy,(a) is
1 T —
Ky(z,y) = Ekh (177 hy)

where ky, (2, 2) = (¢ 'a)(=, 2, h) is a smooth function satisfying estimates |92 07k (z, z)| <
Copn (1 + |2])~N for any «, 3, N so that Op,,(a) is uniformly bounded on any LP-space,
p € [1,00].

Let us recall the main result of symbolic calculus (Theorem 7.9, Proposition 7.7, formulas
(7.16) and (7.3) in [33]).
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THEOREM A.2. — Let my,mq be two order functions, a; an element of S(m;),

J = 1,2. Thereis an element a1 # as of S(m1ma) such that Opy, (a1 #a2) = Opy,(a1) Opy, (a2).
Moreover, one has the expansion

N1\ ,
(A2) a1 # az — Z(:) il <z) (0a1)(0a2) € RN LS (mymy).

j=
Let m be an order function, a an element of S(m). There is b in S(m) such that
Op,,(a)* = Opy,(b). Moreover, b = @ + hby with by in S(m).

COROLLARY A.3. — Let m be an order function such that m= is also an order function.
Let abein S(1), e be in S(m) and assume that e > cm for some ¢ > 0 on a neighborhood of the
support of a. Then for any N € N, there are q € S(m™1), r € S(1) such that a = e # q+ h™Vr
(resp. a = q # e + hNr ). Moreover, we may write ¢ = qo + hq, where qo, q1 are in S(m™1)
and qo = %.

Proof. — We define o = 2, which is an element of S(m™') by assumption. Then
Theorem A.2 shows that a — e # qo (resp. a — qo # e) may be written ha; + h™Vry with
ay in S(1), Suppa; C Supp a. We iterate the construction to get the result. O
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