[Estimées de Strichartz pour les ondes de surface]
Nous nous intéressons dans cet article aux propriétés dispersives du système des ondes de surface en dimension , avec tension de surface. Nous démontrons tout d’abord des estimées de Strichartz, avec pertes de dérivées, au niveau de régularité où nous avons construit des solutions dans [3]. Ensuite, pour des données initiales plus régulières, nous démontrons les estimées de Strichartz optimales (i.e. sans perte de régularité par rapport à celles du système linéarisé en ()).
In this paper we investigate the dispersive properties of the solutions of the two dimensional water-waves system with surface tension. First we prove Strichartz type estimates with loss of derivatives at the same low level of regularity we were able to construct the solutions in [3]. On the other hand, for smoother initial data, we prove that the solutions enjoy the optimal Strichartz estimates (i.e, without loss of regularity compared to the system linearized at ()).
Keywords: Euler equation, free boundary problems, water-waves, Cauchy theory, dispersive estimates
Mot clés : Équation d'Euler, problèmes à frontière libre, ondes de surfaces, théorie de Cauchy, estimées dispersives
@article{ASENS_2011_4_44_5_855_0, author = {Alazard, Thomas and Burq, Nicolas and Zuily, Claude}, title = {Strichartz estimates for water waves}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {855--903}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 44}, number = {5}, year = {2011}, doi = {10.24033/asens.2156}, mrnumber = {2931520}, zbl = {1260.35140}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2156/} }
TY - JOUR AU - Alazard, Thomas AU - Burq, Nicolas AU - Zuily, Claude TI - Strichartz estimates for water waves JO - Annales scientifiques de l'École Normale Supérieure PY - 2011 SP - 855 EP - 903 VL - 44 IS - 5 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/asens.2156/ DO - 10.24033/asens.2156 LA - en ID - ASENS_2011_4_44_5_855_0 ER -
%0 Journal Article %A Alazard, Thomas %A Burq, Nicolas %A Zuily, Claude %T Strichartz estimates for water waves %J Annales scientifiques de l'École Normale Supérieure %D 2011 %P 855-903 %V 44 %N 5 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/asens.2156/ %R 10.24033/asens.2156 %G en %F ASENS_2011_4_44_5_855_0
Alazard, Thomas; Burq, Nicolas; Zuily, Claude. Strichartz estimates for water waves. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 44 (2011) no. 5, pp. 855-903. doi : 10.24033/asens.2156. http://www.numdam.org/articles/10.24033/asens.2156/
[1] On the Cauchy problem for water gravity waves, preprint, 2011. | Zbl
, & ,[2] On the water-wave equations with surface tension, Duke Math. J. 158 (2011), 413-499. | MR | Zbl
, & ,[3] Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves, Comm. Partial Differential Equations 34 (2009), 1632-1704. | MR | Zbl
& ,[4] Paracomposition et opérateurs paradifférentiels, Comm. Partial Differential Equations 11 (1986), 87-121. | MR | Zbl
,[5] Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Comm. Partial Differential Equations 14 (1989), 173-230. | MR | Zbl
,[6] The zero surface tension limit of two-dimensional water waves, Comm. Pure Appl. Math. 58 (2005), 1287-1315. | MR | Zbl
& ,[7] Équations d'ondes quasilinéaires et estimations de Strichartz, Amer. J. Math. 121 (1999), 1337-1377. | MR | Zbl
& ,[8] Nonlinearity and functional analysis, Academic Press, 1977. | MR | Zbl
,[9] Interpolation spaces. An introduction, Grundl. Math. Wiss. 223, Springer, 1976. | MR | Zbl
& ,[10] On the Cauchy problem for a capillary drop. I. Irrotational motion, Math. Methods Appl. Sci. 21 (1998), 1149-1183. | MR | Zbl
& ,[11] Strichartz estimates for wave equations with coefficients of Sobolev regularity, Comm. Partial Differential Equations 31 (2006), 649-688. | MR | Zbl
,[12] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. 14 (1981), 209-246. | EuDML | Numdam | MR | Zbl
,[13] Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math. 126 (2004), 569-605. | MR | Zbl
, & ,[14] On well-posedness for the Benjamin-Ono equation, Math. Ann. 340 (2008), 497-542. | MR | Zbl
& ,[15] Fluides parfaits incompressibles, Astérisque 230 (1995). | Numdam | MR | Zbl
,[16] Strichartz estimates for the water-wave problem with surface tension, Comm. Partial Differential Equations 35 (2010), 2195-2252. | MR | Zbl
, & ,[17] Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc. 20 (2007), 829-930. | MR | Zbl
& ,[18] Global solutions for the gravity water waves equation in dimension 3, C. R. Math. Acad. Sci. Paris 347 (2009), 897-902. | MR | Zbl
, & ,[19] A long wave approximation for capillary-gravity waves and an effect of the bottom, Comm. Partial Differential Equations 32 (2007), 37-85. | MR | Zbl
,[20] Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math. 58 (2005), 217-284. | MR | Zbl
& ,[21] Para-differential calculus and applications to the Cauchy problem for nonlinear systems, Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series 5, Edizioni della Normale, Pisa, 2008. | MR | Zbl
,[22] Well-posedness of the water-wave problem with surface tension, J. Math. Pures Appl. 92 (2009), 429-455. | MR | Zbl
& ,[23] On the transverse instability of one dimensional capillary-gravity waves, Discrete Contin. Dyn. Syst. Ser. B 13 (2010), 859-872. | MR | Zbl
& ,[24] On the three-dimensional Euler equations with a free boundary subject to surface tension, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 753-781. | EuDML | Numdam | MR | Zbl
,[25] Geometry and a priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math. 61 (2008), 698-744. | MR | Zbl
& ,[26] A parametrix construction for wave equations with coefficients, Ann. Inst. Fourier (Grenoble) 48 (1998), 797-835. | EuDML | Numdam | MR | Zbl
,[27] Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations 27 (2002), 1337-1372. | MR | Zbl
& ,[28] Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Amer. J. Math. 122 (2000), 349-376. | MR | Zbl
,[29] Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. II, Amer. J. Math. 123 (2001), 385-423. | MR | Zbl
,[30] Almost global wellposedness of the 2-D full water wave problem, Invent. Math. 177 (2009), 45-135. | MR | Zbl
,[31] Global well-posedness of the 3D full water wave problem, preprint arXiv:0910.2473. | Zbl
,Cité par Sources :