Von Neumann and Birkhoff ergodic theorems for negatively curved groups
[Théorèmes ergodiques de von Neumann et de Birkhoff sur les groupes à courbure négative]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 5, pp. 1113-1147.

Pour tout groupe hyperbolique au sens de Gromov et pour toute action, préservant la mesure, sur un espace de probabilités, nous démontrons une inégalité maximale pour les moyennes sur des boules concentriques ou sur des anneaux sphériques concentriques de même épaisseur. Sous une hypothèse supplémentaire, valable par exemple pour les actions isométriques et proprement discontinues sur des espaces CAT(-1), nous démontrons de plus un théorème ergodique ponctuel pour une suite de mesures de probabilités à support dans des anneaux sphériques concentriques.

We prove maximal inequalities for concentric ball and spherical shell averages on a general Gromov hyperbolic group, in arbitrary probability preserving actions of the group. Under an additional condition, satisfied for example by all groups acting isometrically and properly discontinuously on CAT(-1) spaces, we prove a pointwise ergodic theorem with respect to a sequence of probability measures supported on concentric spherical shells.

DOI : 10.24033/asens.2267
Classification : 28D15, 37A20, 20F67, 60J50.
Keywords: Negatively curved group, ergodic theorem, maximal inequality, Patterson-Sullivan measure, measurable equivalence relations, Poisson boundary.
Mot clés : Groupe à courbure négative, action de groupe, théorème ergodique, inégalité maximale, mesure de Patterson-Sullivan, relation d'équivalence mesurable, bord de Poisson.
@article{ASENS_2015__48_5_1113_0,
     author = {Bowen, Lewis and Nevo, Amos},
     title = {Von {Neumann} and {Birkhoff} ergodic theorems for negatively curved groups},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1113--1147},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {5},
     year = {2015},
     doi = {10.24033/asens.2267},
     mrnumber = {3429477},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2267/}
}
TY  - JOUR
AU  - Bowen, Lewis
AU  - Nevo, Amos
TI  - Von Neumann and Birkhoff ergodic theorems for negatively curved groups
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 1113
EP  - 1147
VL  - 48
IS  - 5
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2267/
DO  - 10.24033/asens.2267
LA  - en
ID  - ASENS_2015__48_5_1113_0
ER  - 
%0 Journal Article
%A Bowen, Lewis
%A Nevo, Amos
%T Von Neumann and Birkhoff ergodic theorems for negatively curved groups
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 1113-1147
%V 48
%N 5
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2267/
%R 10.24033/asens.2267
%G en
%F ASENS_2015__48_5_1113_0
Bowen, Lewis; Nevo, Amos. Von Neumann and Birkhoff ergodic theorems for negatively curved groups. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 5, pp. 1113-1147. doi : 10.24033/asens.2267. http://www.numdam.org/articles/10.24033/asens.2267/

Anantharaman, C.; Anker, J.-P.; Babillot, M.; Bonami, A.; Demange, B.; Grellier, S.; Havard, F.; Jaming, P.; Lesigne, E.; Maheux, P.; Otal, J.-P.; Schapira, B.; Schreiber, J.-P., Monographies de L'Enseignement Mathématique, 41, L'Enseignement Mathématique, Geneva, 2010, 270 pages (ISBN: 978-2-940264-08-7) | MR | Zbl

Adams, S. Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups, Topology, Volume 33 (1994), pp. 765-783 (ISSN: 0040-9383) | DOI | MR | Zbl

Arnolʼd, V. I.; Krylov, A. L. Uniform distribution of points on a sphere and certain ergodic properties of solutions of linear ordinary differential equations in a complex domain, Dokl. Akad. Nauk SSSR, Volume 148 (1963), pp. 9-12 (ISSN: 0002-3264) | MR | Zbl

Aaronson, J.; Lemańczyk, M., Algebraic and topological dynamics (Contemp. Math.), Volume 385, Amer. Math. Soc., Providence, RI, 2005, pp. 77-87 | DOI | MR | Zbl

Ancona, A. Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math., Volume 125 (1987), pp. 495-536 (ISSN: 0003-486X) | DOI | MR | Zbl

Ancona, A., Potential theory—surveys and problems (Prague, 1987) (Lecture Notes in Math.), Volume 1344, Springer, Berlin, 1988, pp. 1-23 | DOI | MR | Zbl

Ancona, A., École d'été de Probabilités de Saint-Flour XVIII—1988 (Lecture Notes in Math.), Volume 1427, Springer, Berlin, 1990, pp. 1-112 | DOI | MR | Zbl

Bogopolʼskiĭ, O. V.; Gerasimov, V. N. Finite subgroups of hyperbolic groups, Algebra i Logika, Volume 34 (1995), pp. 619-622 (ISSN: 0373-9252) | DOI | MR | Zbl

Bridson, M. R.; Haefliger, A., Grund. Math. Wiss., 319, Springer, Berlin, 1999, 643 pages (ISBN: 3-540-64324-9) | DOI | MR | Zbl

Blachère, S.; Haïssinsky, P.; Mathieu, P. Harmonic measures versus quasiconformal measures for hyperbolic groups, Ann. Sci. Éc. Norm. Supér., Volume 44 (2011), pp. 683-721 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Birkhoff, G. D. Proof of the ergodic theorem, Proc. Nat. Acad. Sci. USA, Volume 17 (1931), pp. 656-660 | DOI | Zbl

Björklund, M. Central limit theorems for Gromov hyperbolic groups, J. Theoret. Probab., Volume 23 (2010), pp. 871-887 (ISSN: 0894-9840) | DOI | MR | Zbl

Bufetov, A. I.; Klimenko, A. Maximal inequality and ergodic theorems for Markov groups, Tr. Mat. Inst. Steklova, Volume 277 (2012), pp. 33-48 translation: Proc. Steklov Inst. Math. 277 (2012), 27–42 (ISBN: 5-7846-0124-5; 978-5-7846-0124-7, ISSN: 0371-9685) | MR | Zbl

Bufetov, A. I.; Khristoforov, M.; Klimenko, A. Cesàro convergence of spherical averages for measure-preserving actions of Markov semigroups and groups, Int. Math. Res. Not., Volume 2012 (2012), pp. 4797-4829 (ISSN: 1073-7928) | DOI | MR | Zbl

Bowen, L.; Nevo, A. Geometric covering arguments and ergodic theorems for free groups, Enseign. Math., Volume 59 (2013), pp. 133-164 (ISSN: 0013-8584) | DOI | MR | Zbl

Bowen, L.; Nevo, A. Pointwise ergodic theorems beyond amenable groups, Ergodic Theory Dynam. Systems, Volume 33 (2013), pp. 777-820 (ISSN: 0143-3857) | DOI | MR | Zbl

Bowen, L.; Nevo, A. Amenable equivalence relations and the construction of ergodic averages for group actions, J. Anal. Math., Volume 126 (2015), pp. 359-388 (ISSN: 0021-7670) | DOI | MR

Bowen, L. Invariant measures on the space of horofunctions of a word hyperbolic group, Ergodic Theory Dynam. Systems, Volume 30 (2010), pp. 97-129 (ISSN: 0143-3857) | DOI | MR | Zbl

Bowen, L. The type and stable type of the boundary of a Gromov hyperbolic group, Geom. Dedicata, Volume 172 (2014), pp. 363-386 (ISSN: 0046-5755) | DOI | MR | Zbl

Brady, N. Finite subgroups of hyperbolic groups, Internat. J. Algebra Comput., Volume 10 (2000), pp. 399-405 (ISSN: 0218-1967) | DOI | MR | Zbl

Breuillard, E. Geometry of locally compact groups of polynomial growth and shape of large balls, Groups Geom. Dyn., Volume 8 (2014), pp. 669-732 (ISSN: 1661-7207) | DOI | MR | Zbl

Bufetov, A. I. Operator ergodic theorems for actions of free semigroups and groups, Funktsional. Anal. i Prilozhen., Volume 34 (2000), pp. 1-17 (ISSN: 0374-1990) | DOI | MR | Zbl

Bufetov, A. I. Convergence of spherical averages for actions of free groups, Ann. of Math., Volume 155 (2002), pp. 929-944 (ISSN: 0003-486X) | DOI | MR | Zbl

Calegari, D., Geometry and topology down under (Contemp. Math.), Volume 597, Amer. Math. Soc., Providence, RI, 2013, pp. 15-52 | DOI | MR | Zbl

Calegari, D.; Fujiwara, K. Combable functions, quasimorphisms, and the central limit theorem, Ergodic Theory Dynam. Systems, Volume 30 (2010), pp. 1343-1369 (ISSN: 0143-3857) | DOI | MR | Zbl

Connes, A.; Feldman, J.; Weiss, B. An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems, Volume 1 (1981), p. 431-450 (1982) (ISSN: 0143-3857) | DOI | MR | Zbl

Connell, C.; Muchnik, R. Harmonicity of quasiconformal measures and Poisson boundaries of hyperbolic spaces, Geom. Funct. Anal., Volume 17 (2007), pp. 707-769 (ISSN: 1016-443X) | DOI | MR | Zbl

Colding, T. H.; Minicozzi, W. P. I. Liouville theorems for harmonic sections and applications, Comm. Pure Appl. Math., Volume 51 (1998), pp. 113-138 (ISSN: 0010-3640) | DOI | MR | Zbl

Coornaert, M. Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math., Volume 159 (1993), pp. 241-270 http://projecteuclid.org/euclid.pjm/1102634263 (ISSN: 0030-8730) | DOI | MR | Zbl

Coornaert, M.; Papadopoulos, A. Horofunctions and symbolic dynamics on Gromov hyperbolic groups, Glasg. Math. J., Volume 43 (2001), pp. 425-456 (ISSN: 0017-0895) | DOI | MR | Zbl

Fujiwara, K.; Nevo, A. Maximal and pointwise ergodic theorems for word-hyperbolic groups, Ergodic Theory Dynam. Systems, Volume 18 (1998), pp. 843-858 (ISSN: 0143-3857) | DOI | MR | Zbl

Flajolet, P.; Sedgewick, R., Cambridge Univ. Press, Cambridge, 2009, 810 pages (ISBN: 978-0-521-89806-5) | DOI | MR | Zbl

Gorodnik, A.; Nevo, A., Annals of Math. Studies, 172, Princeton Univ. Press, Princeton, NJ, 2010, 121 pages (ISBN: 978-0-691-14185-5) | MR | Zbl

Grigorchuk, R. I. Ergodic theorems for the actions of a free group and a free semigroup, Mat. Zametki, Volume 65 (1999), pp. 779-783 ; translation: Math. Notes 65 (1999), 779–783 (ISSN: 0025-567X) | DOI | MR | Zbl

Gromov, M., Essays in group theory (Math. Sci. Res. Inst. Publ.), Volume 8, Springer, New York, 1987, pp. 75-263 | DOI | MR | Zbl

Guivarcʼh, Y. Généralisation d'un théorème de von Neumann, C. R. Acad. Sci. Paris Sér., Volume 268 (1969), pp. 1020-1023 | MR | Zbl

Kechris, A. S.; Solecki, S.; Todorcevic, S. Borel chromatic numbers, Adv. Math., Volume 141 (1999), pp. 1-44 (ISSN: 0001-8708) | DOI | MR | Zbl

Katznelson, Y.; Weiss, B. The classification of nonsingular actions, revisited, Ergodic Theory Dynam. Systems, Volume 11 (1991), pp. 333-348 (ISSN: 0143-3857) | DOI | MR | Zbl

Lindenstrauss, E. Pointwise theorems for amenable groups, Invent. Math., Volume 146 (2001), pp. 259-295 (ISSN: 0020-9910) | DOI | MR | Zbl

Nevo, A., Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 871-982 | DOI | MR | Zbl

Nevo, A. Harmonic analysis and pointwise ergodic theorems for noncommuting transformations, J. Amer. Math. Soc., Volume 7 (1994), pp. 875-902 (ISSN: 0894-0347) | DOI | MR | Zbl

Nevo, A.; Stein, E. M. A generalization of Birkhoff's pointwise ergodic theorem, Acta Math., Volume 173 (1994), pp. 135-154 (ISSN: 0001-5962) | DOI | MR | Zbl

Ornstein, D. S.; Weiss, B. Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math., Volume 48 (1987), pp. 1-141 (ISSN: 0021-7670) | DOI | MR | Zbl

Pollicott, M.; Sharp, R. Ergodic theorems for actions of hyperbolic groups, Proc. Amer. Math. Soc., Volume 141 (2013), pp. 1749-1757 (ISSN: 0002-9939) | DOI | MR | Zbl

Tempelʼman, A. A. Ergodic theorems for general dynamical systems, Dokl. Akad. Nauk SSSR, Volume 176 (1967), pp. 790-793 ; translation: Soviet Math. Dokl. 8 (1967), 1213–1216 (ISSN: 0002-3264) | MR | Zbl

Tessera, R. Volume of spheres in doubling metric measured spaces and in groups of polynomial growth, Bull. Soc. Math. France, Volume 135 (2007), pp. 47-64 (ISSN: 0037-9484) | DOI | Numdam | MR | Zbl

Väisälä, J. Gromov hyperbolic spaces, Expo. Math., Volume 23 (2005), pp. 187-231 (ISSN: 0723-0869) | DOI | MR | Zbl

von Neumann, J. Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci. USA, Volume 18 (1932), pp. 70-82 | DOI | JFM | Zbl

Weiss, B., Topics in dynamics and ergodic theory (London Math. Soc. Lecture Note Ser.), Volume 310, Cambridge Univ. Press, Cambridge, 2003, pp. 226-262 | DOI | MR | Zbl

Zimmer, R. J. Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Functional Analysis, Volume 27 (1978), pp. 350-372 | DOI | MR | Zbl

Cité par Sources :