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VON NEUMANN AND BIRKHOFF ERGODIC
THEOREMS FOR NEGATIVELY CURVED GROUPS

 L BOWEN*  A NEVO†

A. – We prove maximal inequalities for concentric ball and spherical shell averages on a
general Gromov hyperbolic group, in arbitrary probability preserving actions of the group. Under an
additional condition, satisfied for example by all groups acting isometrically and properly discontinu-
ously on CAT(−1) spaces, we prove a pointwise ergodic theorem with respect to a sequence of proba-
bility measures supported on concentric spherical shells.

R. – Pour tout groupe hyperbolique au sens de Gromov et pour toute action, préservant la
mesure, sur un espace de probabilités, nous démontrons une inégalité maximale pour les moyennes sur
des boules concentriques ou sur des anneaux sphériques concentriques de même épaisseur. Sous une
hypothèse supplémentaire, valable par exemple pour les actions isométriques et proprement disconti-
nues sur des espaces CAT(−1), nous démontrons de plus un théorème ergodique ponctuel pour une
suite de mesures de probabilités à support dans des anneaux sphériques concentriques.

1. Introduction

1.1. Motivation and background

1.1.1. The Arnol′d-Krylov problem. – Given a dynamical system with invariant probabil-
ity measure, von-Neumann’s mean ergodic theorem [40] and Birkhoff ’s pointwise ergodic
theorem [8] assert that the time evolution of the dynamical system distributes it evenly in
the space. More concretely, under the sole assumption of ergodicity, namely the absence of
invariant sets, when one samples the values of a function on the space at regular time intervals
along the trajectory of the dynamical system, the average of these samples over time will con-
verge (in the mean and pointwise) to the space average of the function, in accordance with
Bolzmann’s “ergodic hypothesis”. Equivalently, the trajectories spend the right fraction of
time in every subset of space, given by the measure of the subset.

* Lewis Bowen is supported in part by NSF grant DMS-0968762, NSF CAREER Award DMS-0954606 and
BSF grant 2008274. † Amos Nevo is supported in part by ISF grant, and BSF grant 2008274.
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1114 L. BOWEN AND A. NEVO

The study of dynamical systems defined by a measure-preserving transformation is based
on two main ingredients, namely that intervals are asymptotically invariant under transla-
tions, and that they satisfy the doubling property. Asymptotic invariance arguments play
a crucial role in several proofs of Birkhoff ’s pointwise ergodic theorem, in Riesz’s proof
of von-Neumann’s mean ergodic theorem, in the Krylov-Boglyobov proof of the existence
of probability measures invariant under a continuous transformation of a compact space,
in Calderón’s transference principle reducing aspects of analysis of the orbits of the flow
on phase space to analysis on the integers, and in Furstenberg’s correspondence principle.
The doubling property plays a crucial role in Wiener’s covering argument which implies the
Hardy-Littlewood maximal inequality, and thus also in the maximal ergodic theorem and
the pointwise ergodic theorem. These arguments were extended over the years to actions by
any finite number of commuting measure-preserving transformations.

Half a century ago, Arnol′d and Krylov [7] have raised the problem of establishing the
following generalization of the classical ergodic theorems. Let Γ be a finitely generated
group, and S a finite symmetric generating set. Consider the associated left invariant word
metric on Γ, and let Bn and Sn denote the ball and the sphere of radius n with center e.
Denote the uniform average on the ball by βn, and on the sphere by σn. Given a measure-
preserving action of Γ, consider sampling the values of a function on an orbit of Γ according
to βn. Does this averaging process converge in the mean and pointwise, and if so, what is its
limit? Furthermore, when does the averaging process associated with σn converge ? Thus the
Arnol′d-Krylov problem amounts to establishing ergodic theorems for any choice of finitely
many measure-preserving transformations.

The Arnol′d-Krylov problem has proved to be very difficult and remains wide open. The
only class of groups where a complete positive solution for βn has been obtained is that of
groups with polynomial volume growth. The sequence of balls in such groups satisfies the
doubling condition, and the main ingredient in the relatively recent proof of the pointwise
ergodic theorem is the fact that the sequence of word metric ballsBn is in fact asymptotically
invariant under translations. This was established by Tessera [47] (see also [26]) and in a
sharper form by Breuillard [18]. We refer to [42] and [3] for a detailed account of the proof
of the pointwise ergodic theorem in this case.

The remarkable utility of asymptotically invariant sequences (exemplified very briefly
above) resulted in the fact that much of the effort in developing ergodic theorems for
countable groups has been devoted to generalizing the classical convergence results for a
single transformation to ergodic actions of groups possessing an asymptotically invariant
sequence. This class coincides with the class of amenable groups, and the averages studied
most extensively have been uniform averages on a Følner sequence, often satisfying suitable
regularity conditions introduced by Tempelman [46], generalizing the doubling condition.
For more on the subject of ergodic theorems on amenable groups we refer to the foun-
dational paper by Ornstein and Weiss [44], and for more recent results to Lindenstrauss’s
ergodic theorem for tempered Følner sequences [39] as well as the survey [49].

However, already for meta-Abelian (non-nilpotent) solvable groups, and certainly for
non-amenable groups, the sequence of word-metric balls is not asymptotically invariant, so
the methods developed for Følner sequences have not led to further progress on the Arnol′d-
Krylov problem.
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1.1.2. Free groups. – Turning to the problem of establishing ergodic theorems for non-
amenable groups, we note that an important special case that figures prominently in the
theory is that of free (non-Abelian) groups. In the case of the word metric associated with
free generators, the symmetry inherent in the radial structure implies that the convolution
algebra generated by σn is commutative, and this fact opens the door to a spectral approach
to the problem. This approach was initiated already by Arnol′d and Krylov [7] who proved an
equidistribution theorem for radial averages on dense free subgroups of isometries of the unit
sphere S2 via a spectral argument similar to Weyl’s equidistribution theorem on the circle.
Guivarc’h has established a mean ergodic theorem for radial averages on the free group,
using von-Neumann’s original approach via the spectral theorem [36]. The pointwise ergodic
theorem for the averages 1

2 (σn+σn+1) in general actions of the free group was proved in [41]
for L2-functions using spectral theory, and extended to function in Lp, p > 1, in [43], using
more refined spectral methods.

Another successful approach to ergodic theorems on free groups and more general
Markov groups is based on the theory of Markov operator. Grigorchuk [34] has applied the
Hopf-Dunford-Scwartz operator ergodic theorem to deduce a pointwise ergodic theorem for
the uniform averages µk = 1

k+1

∑k
n=0 σn of the spheres. This approach was subsequently

generalized by Bufetov to weighted averages of spheres on general Markov groups [20].
Using Rota’s approach to the operator ergodic theorem via martingale theory, Bufetov [21]
has extended pointwise convergence of the averages 1

2 (σn + σn+1) on the free group to the
function space L logL. Pointwise almost sure convergence for the uniform averages µk of
the spheres on general Markov groups for bounded functions has been established recently
in [22, Cor. 1], and under additional assumption also in [45]. It is a reflection of the difficulty
of the Arnol′d-Krylov problem that in both of these results, the limit has not been identified,
in general. Under a suitable mixing assumption on the action, it was shown in [32] that the
limit is indeed the space average. Finally, we note that an ergodic theorem for actions of
general word-hyperbolic groups on finite spaces was established in [12].

1.1.3. Ergodic theorems for lattice subgroups. – An important extension of the Arnol′d-
Krylov problem is to consider balls and spheres defined by natural left-invariant metrics
on the group, not necessarily given by word-metrics. Thus, when the group Γ is a discrete
subgroup of a locally compact group, one can consider left-invariant metrics onG restricted
to Γ. Extending the scope of the problem gives rise to many natural examples, of which we
mention the following. When Γ is a lattice subgroup of a (non-compact) simple Lie group
with finite center, consider (any) non-trivial linear representation τ : G → SLn(R), and
restrict (any) norm on SLn(R) to τ(Γ). It was shown in [33] that in any ergodic action of Γ,
the associated ball averages converge in norm and pointwise for any function f ∈ Lp, pro-
vided 1 < p < ∞. Similar results hold more generally for irreducible lattices in S-algebraic
groups, and we refer to [33] for further details. We remark that the methods of [33] rely in
a crucial manner on spectral theory, namely on the unitary representation theory of the
semisimple group G involved, and are thus limited only to those countable groups which
arise as lattice subgroups of G.

More generally, when Γ acts isometrically and properly discontinuously on a locally com-
pact metric space (X, d), one can consider the (pseudo) metrics given by

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1116 L. BOWEN AND A. NEVO

dx(γ1, γ2) = d(γ1x, γ2x). In the present paper our main concern will be the case where
the metric space in question is hyperbolic, for example a CAT(−1) space. Before turning
to describe our main results, let us note briefly that we will completely avoid any spectral
considerations. Rather, the basic principle underlying our approach is the realization that
one can utilize the amenable actions of a group in order to construct families of ergodic
averages on it. Thus a remarkable feature of this approach is that it treats amenable and
non-amenable groups on an equal footing, and in fact allows us to utilize many of the classi-
cal asymptotic invariance and doubling arguments in a much more general context. Indeed,
the generality of our approach is underscored by the fact that for any countable group Γ, the
Poisson boundary associated with a generating probability measure is an amenable ergodic
action of Γ [50], so that any countable group admits such an action. For the case of free
groups this approach is explained in full in [14], where the ergodic theorems of [43] and [21]
are generalized. Some of the ingredients necessary in our approach were developed in [15],
and in the present paper we will utilize and generalize the constructions appearing there.

We now proceed to introduce the necessary definitions and state the main results.

1.2. Basic definitions

Let Γ be a countable group and {ζr}r>0 a family of probability measures on Γ. Given a
pmp (probability-measure-preserving) action Γ y (X,m), we can associate to each ζr an
operator πX(ζr) on Lp(X,m), acting by:

πX(ζr)(f)(x) =
∑
g∈Γ

ζr(g)f(g−1x).

We also consider the associated maximal function:

Mζ [f ](x) := sup
r>0

πX(ζr)(|f(x)|).

We will usually suppress πX from the notation and write simply πX(ζr)f = ζrf . Let us recall
the following definitions :

– {ζr}r>0 satisfies the strong Lp maximal inequality if there is a constant Cp > 0 such
that ‖Mζ [f ]‖p ≤ Cp‖f‖p for every f ∈ Lp(X,m);

– {ζr}r>0 satisfies the L logL maximal inequality if there is a constant C1 > 0 such that
‖Mζ [f ]‖L logL ≤ C1‖f‖1 for every f ∈ L1(X,m);

– {ζr}r>0 is a pointwise convergent family inLp if ζr(f) converges pointwise a.e. for every
f ∈ Lp(X,m);

– {ζr}r>0 is a pointwise ergodic family in Lp if ζr(f) converges pointwise a.e. to E[f |Γ],
the conditional expectation of f on the sigma-algebra of Γ-invariant Borel sets (for
every f ∈ Lp(X,m)).

The purpose of the present work is to establish maximal and pointwise ergodic theorems
for natural geometric averages on word hyperbolic groups. Before describing the probability
measures we will be interested in, let us recall the following definitions. Given a proper left-
invariant metric d on Γ, the Gromov product of x, y ∈ Γ relative to z ∈ Γ is

(x|y)z :=
1

2

(
d(x, z) + d(y, z)− d(x, y)

)
.
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The pair (Γ, d) is a hyperbolic group if for some δ ≥ 0,

(x|y)w ≥ min{(x|z)w, (y|z)w} − δ, ∀x, y, w, z ∈ Γ.(1.1)

Let I ⊂ R be an interval. A map γ : I → Γ is a (λ, c)-quasi-geodesic if λ−1|i − j| − c ≤
d(γ(i), γ(j)) ≤ λ|i − j| + c for every i, j. We say that (Γ, d) is uniformly quasi-geodesic if
there exists a constant c > 0 such that for every pair of elements x, y ∈ Γ there exists a
(1, c)-quasi-geodesic from x to y.

1.3. Statement of main results

Our first result concerns maximal inequalities for radial averages. For r > 0, let βr be a
probability measure on Γ which is uniformly distributed on the closed ballB(e, r) of radius r
centered at the identity. In other words, βr(g) = |B(e, r)|−1 if g ∈ B(e, r) and βr(g) = 0

otherwise. Similarly, for a fixed a > 0, we denote by σr,a the uniform probability measure on
the spherical shell Sr,a(e) = {g ∈ Γ ; r − a < |g| ≤ r + a}. Finally we let µr,a = 1

r

∫ r
0
σs,ads

be the uniform averages of the spherical shell measures. Our main maximal inequality is as
follows.

T 1.1. – Let (Γ, d) be a non-elementary uniformly quasi-geodesic hyperbolic
group. Then the family of ball averages {βr}r>0 satisfies the L logL-maximal inequality and
the strong Lp maximal inequality for every p > 1. The same holds for the families {σr,a}r>0

and {µr,a}r>0, provided a is larger than a fixed constant depending only on (Γ, d).

Our second result considers the case of word metrics dS , where S is a finite symmetric set
of generators for Γ and dS(g, e) = |g|S is the word length. We let σn denote the uniform
probability measure on the sphere Sn(e) of radius n and center e, and µn = 1

n+1

∑n
k=0 σk

their uniform averages. We then have

T 1.2. – Let Γ be a word-hyperbolic group, S a symmetric set of generators. Then
µn satisfies the strong maximal inequality in Lp, 1 < p <∞, and in L logL, and is a pointwise
(and mean) convergent family in these spaces.

We remark that Theorem 1.2 improves on the L2-maximal inequality for µn established
in [32], extends the mean and pointwise convergence in Lp, 1 < p <∞, proved for µn in [22,
Corollary 1] and [23, Thm. 1] to the function space L logL, and generalizes the pointwise
convergence for bounded functions established for µn (under an additional assumption) also
in [45].

Let us turn now to the problem of pointwise (and mean) convergence of the balls and
spherical shell averages on a hyperbolic group (Γ, d). We will require an additional assump-
tion on the group, and we will comment on its prevalence and on the optimality of the ergodic
theorem it gives rise to after stating the theorem.

We will say that the Gromov boundary coincides with the horofunction boundary if for every
point ξ in the Gromov boundary of (Γ, d), every sequence {xi}∞i=1 ⊂ Γ converging to ξ and
every y ∈ Γ, the limit

hξ(y) := lim
i→∞

d(xi, y)− d(xi, e)

exists and depends only on ξ, y. Our main pointwise ergodic theorem is:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1118 L. BOWEN AND A. NEVO

T 1.3. – Let (Γ, d) be a non-elementary uniformly quasi-geodesic hyperbolic group
whose Gromov boundary coincides with its horofunction boundary. Then for each a > 0 larger
than a fixed constant depending only on (Γ, d), there exists a family {κr}r>0 of probability
measures on Γ such that

1. each κr is supported on the spherical shell Sr,a(e) = {g ∈ Γ : d(e, g) ∈ (r − a, r + a]},
2. {κr}r>0 is a pointwise (and mean) ergodic family in Lp for every p > 1 and in L logL.

1.4. Comments on ergodic theorems for radial averages

As to the hypotheses of Theorem 1.3, let us note that the coincidence of the horofunction
boundary and the Gromov boundary is a common phenomenon, but not a universal one.
Let us give two examples where it is satisfied, and one where it may fail.

1. CAT(−1) spaces. Suppose Γ acts properly discontinuously by isometries on a
CAT(−1) space (X, dX). For x ∈ X (with trivial stability group in Γ) define the
metric d on Γ by d(g, g′) := dX(gx, g′x). For a proof of the coincidence of the
boundaries for this metric see [19, Chapter II.8, Theorem 8.13 and Chapter III.H].

2. The Green metric. If ζ is a finitely supported symmetric probability measure on Γ

whose support generates Γ then the Green metric induced by ζ is defined as follows.
LetX1, X2, . . . be a sequence of independent, identically distributed random variables
each with law ζ. Let Z0 = e and Zn = X1 · · ·Xn (for n ≥ 1) be the random walk
on Γ induced by ζ. For g, g′ ∈ Γ, let dζ(g, g′) = − log(p(g, g′)) where p(g, g′) is
the probability that gZn = g′ for some n ≥ 0. This is the Green metric induced
by ζ. The informative paper [9] explains why the horofunction boundary of (Γ, dζ)

coincides with its Gromov boundary. This is based on work of Ancona [4, 5, 6] showing
that the Martin boundary of (Γ, dζ) equals its Gromov boundary. In [10] it is shown
that the Green metric is uniformly quasi-geodesic and Gromov hyperbolic if Γ is
word hyperbolic. It is obviously proper and left-invariant. It follows that every non-
elementary finitely generated word hyperbolic group has a metric d satisfying the
hypotheses of Theorem 1.3.

3. Word metrics. By [30], the horofunction boundary of Γ with an arbitrary word metric
admits a canonical finite-to-1 Γ-equivariant map onto the Gromov boundary. How-
ever, this map need not be a homeomorphism. For example, if Γ = Γ0×F where Γ0 is
word hyperbolic and F is a finite nontrivial group then for any word metric on Γ that
is induced by a generating set of the form {(g, eF ) : g ∈ S} ∪ {(eΓ0

, f) : f ∈ F}
where S is a generating set for Γ0, the horofunction boundary does not coincide with
the Gromov boundary.

Let us now comment briefly on the optimality of Theorem 1.3 in the context of ergodic
theorems for ball averages on hyperbolic groups. To begin with, recall the well-known fact
that the ball averages on the free group, defined with respect to a free set of generators,
actually fail to converge, in general. Indeed, wheneverL2

0(X,m) contains an eigenfunction φ
with πX(σn)φ = (−1)nφ, clearly the sequences πX(σn)φ and πX(βn)φ do not converge, and
the same holds true for spherical shells. Thus even when the horofunction boundary and the
Gromov boundary coincide, as in the case of the free group acting on its Cayley tree, the ball
averages (and the spherical shell averages) do not satisfy the ergodic theorem. This is not an
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ERGODIC THEOREMS FOR NEGATIVELY CURVED GROUPS 1119

isolated fact, and for example in the groups Zp∗Zq where p 6= q, the ergodic theorem likewise
fails for ball (and spherical shell) averages, see the discussion following [42, Thm. 10.7].

Let us now point out however that in the cases just mentioned there exists a sequence of
probability measures supported on the spherical shells Sn,1(e) which is indeed a pointwise
ergodic sequence. It is given by σ′n = 1

2 (σn + σn+1) in these examples, see [41]. By the
previous comment, the probability measures in question supported on the shell Sn,1(e), are
necessarily non-uniform in the examples mentioned. Thus Theorem 1.3 gives essentially the
optimal result in this case, namely pointwise convergence for probability measures supported
on spherical shells.

Finally, let us point out that in some cases, the ball averages associated with a hyperbolic
metric d on Γ do in fact form a pointwise ergodic sequence in Lp, 1 < p < ∞. Indeed,
let G be a connected almost simple real Lie group of real rank one, and Γ a uniform lattice
in G. Let S denote the symmetric space associated with G, and fix a point p ∈ S whose
stabilizer in Γ is trivial. Let D S be the G-invariant Riemannian metric on symmetric space,
and define d S(g, h) = D S(gp, hp) for g, h ∈ Γ. Then d S is a hyperbolic metric on Γ, and
the associated ball averages βr are a pointwise (and mean) ergodic family in Lp, 1 < p <∞.
This fact appears in [33], and its proof depends on detailed information regarding the unitary
representation theory of the simple Lie group G.

1.5. A brief sketch

Let ∂Γ denote the Gromov boundary of (Γ, d). Via the Patterson-Sullivan construction,
there is a quasi-conformal probability measure ν on ∂Γ. So there are constantsC, v > 0 such
that

C−1 exp(−vhξ(g−1)) ≤ dν ◦ g
dν

(ξ) ≤ C exp(−vhξ(g−1))

for every g ∈ Γ and a.e. ξ ∈ ∂Γ where

hξ(g
−1) := inf lim inf

n→∞
d(xi, g

−1)− d(xi, e)

where the infimum is over all sequences {xi} ⊂ Γ converging to ξ.
The type of the action Γ y (∂Γ, ν) encodes the essential range of the Radon-Nikodym

derivative. In [13], it is shown that this type is IIIλ for some λ ∈ (0, 1]. If λ ∈ (0, 1) then we
set

Rλ(g, ξ) = − logλ

(
dν ◦ g
dν

(ξ)

)
.

Using standard results, it can be shown that then we can choose ν so that Rλ(g, ξ) ∈ Z for

every g and a.e. ξ. When λ = 1, we set R1(g, ξ) = + log
(
dν◦g
dν (ξ)

)
.

In order to handle each case uniformly, we set L = R if λ = 1 and L = Z if λ ∈ (0, 1).
Then we let Γ act on ∂Γ× L by

g(ξ, t) = (gξ, t−Rλ(g, ξ)).

This action preserves the measure ν × θλ where θ1 is the measure on R satisfying
dθ1(t) = exp(t)dt and, for λ ∈ (0, 1), θλ is the measure on Z satisfying θλ({n}) = λ−n.

Given a, b ∈ L, let [a, b]L ⊂ L denote the interval {a, a+ 1, . . . , b} if L = Z and [a, b] ⊂ R
if L = R. Similar considerations apply to open intervals and half-open intervals.
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1120 L. BOWEN AND A. NEVO

For any real numbers r, T > 0, and (ξ, t) ∈ ∂Γ× [0, T )L, let

Γr(ξ, t) = {g ∈ Γ : d(g, e)− hξ(g)− t ≤ r, g−1(ξ, t) ∈ ∂Γ× [0, T )L}

and
Br(ξ, t) := {g−1(ξ, t) : g ∈ Γr(ξ, t)}.

Γr(ξ, t) is approximately equal to the intersection of the ball of radius r centered at the
identity with the horoshell {g ∈ Γ : −t ≤ hξ(g) ≤ T − t}. Of course, Γr and Br depend
on T , but we leave this dependence implicit.

Our first main technical result is that if T is sufficiently large then {Br}r>0 is regular: there
exists a constant C > 0 such that for every r > 0 and a.e. (ξ, t) ∈ ∂Γ× [0, T )L,

|
⋃
s≤r

B−1
s Br(ξ, t)| ≤ C|Br(ξ, t)|.

Theorem 1.1 now follows from an extension of the general results in [15, 16]. The idea is that
we can use the regularity of the setsBr and prove a maximal inequality for them, and thus
for the equivalence relation on ∂Γ× [0, T )L given by the intersection of the Γ-orbits with this
subset. We can then average this maximal inequality over ∂Γ to obtain a maximal inequality
for the resulting family of probability measures on Γ. By geometric arguments, the family
we obtain is sufficiently close to being uniform averages on balls that this implies a maximal
inequality for the uniform averages on balls.

The results of [15, 16] do not directly apply because the action of Γ on its boundary might
not be essentially free. However, this action has uniformly bounded stabilizers. Using this
hypothesis we generalize the needed theorems of [15, 16] in §2-2.2.

Next we let Sa = {Sr,a}r>0 be the family of subset functions on ∂Γ× [0, T )L defined by

Sr,a(ξ, t) := Br(ξ, t) \Br−a(ξ, t)

and observe that Sa is also regular if a, T > 0 are sufficiently large.
Our second main technical result is that Sa is asymptotically invariant (modulo a minor

technical issue) assuming that the horofunction boundary coincides with the Gromov
boundary. To explain, we let E denote the equivalence relation on ∂Γ × [0, T )L given
by (ξ, t)E(ξ′, t′) if there exists g ∈ Γ such that (ξ, t) = g(ξ′, t′). The full group of E is the
group of all (equivalence classes of) Borel automorphisms on ∂Γ × [0, T )L with graph con-
tained in E, where two such automorphisms are equivalent if they agree almost everywhere.
It is denoted by [E]. A subset Φ ⊂ [E] generates E if for a.e. (ξ, t) ∈ ∂Γ× [0, T )L and every
(ξ′, t′) with (ξ, t)E(ξ′, t′) there is an element φ ∈ 〈Φ〉 (the subgroup generated by Φ) such
that φ(ξ, t) = (ξ′, t′). Finally, Sa being asymptotically invariant means that there exists a
countable generating set Φ ⊂ [E] such that

lim
r→∞

|Sr,a(ξ, t) M φ(Sr,a(ξ, t))|
|Sr,a(ξ, t)|

= 0

for every φ ∈ Φ and a.e. (ξ, t).
Using asymptotic invariance, it now follows from general results of [15, 16] (as generalized

in §2-2.2) that there is a pointwise convergent family {κr}r>0 of probability measures on Γ

and a constant a > 0 so that each κr is supported on the annulus

{g ∈ Γ : d(e, g) ∈ [r − a, r + a]}.
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However, this is not the end of the proof because at this stage we only know that for any pmp
action Γ y (X,m) and any f ∈ Lp(X,m) that κr(f) converges almost everywhere. We have
not yet identified what it converges to!

The issue is that even if Γ y (X,m) is ergodic, it does not necessarily follow that the
product action Γ y (X × ∂Γ × L,m × ν × θλ) is ergodic. To resolve this, first we show
that Γ y (∂Γ, ν) is weakly mixing (so Γ y (X × ∂Γ,m × ν) is ergodic). This uses the
fact that Poisson boundary actions are weakly mixing [1] and that the action is equivalent
to a Poisson boundary action [27]. From [13], it follows that Γ y (∂Γ, ν) has type IIIρ and
stable type IIIτ for some ρ, τ ∈ (0, 1]. From this it follows that the natural cocycleα : Ẽ → Γ

(where Ẽ is the equivalence relation on X × ∂Γ × [0, T )L) is weakly mixing relative to a
certain compact group. This is ultimately what is needed to invoke Theorems 2.2, 2.3 (which
generalize [15, 16]) and thereby complete the proof.

Organization of the paper. – §2 discusses maximal and ergodic theorems for measured
equivalence relations. This is used in §2.2 to obtain some general ergodic theorems which
will be used to prove the main results. Then §3 reviews Gromov hyperbolic groups and sets
some notation. §4 establishes the regularity of the averaging sets and proves Theorem 1.1 and
Theorem 1.2. In §5, we prove asymptotic invariance of the averaging sets. The last section §5.4
uses asymptotic invariance to complete the proof of Theorem 1.3.

Convention. – We have not attempted to produce explicit estimates for the constants appear-
ing in the statements of the main results, and throughout the paper we use the “variable
constant convention”, namely in different occurrences of a constant (even within the same
argument) the values it assumes may be different.

2. Equivalence relations and ergodic sequences

2.1. An ergodic theorem for equivalence relations

The purpose of this section is to review and generalize the main theorems of [15, 16] so that
we can later apply them to Gromov hyperbolic groups. To this end, let (B, ν) be a standard
probability space andE ⊂ B×B a discrete measurable equivalence relation. Let [E] denote
the full group of E, namely the group of all measurable automorphisms of B with graph
contained inE (discarding a null set). We assume that ν isE-invariant, namely that φ∗ν = ν

for every φ ∈ [E].

We will obtain theorems for E first and then push them forward via a cocycle E → Γ.
We begin by discussing ergodic theorems for E, which utilize finite subset functions, defined
next.

Let 2B be the set of all subsets of B. A (finite) subset function for E is a map F : B → 2B

such that F(ξ) is finite and F(ξ) ⊂ [ξ]E = {η ∈ B : (ξ, η) ∈ E} for almost every ξ. F is
called measurable if the set {(ξ, η) ∈ B ×B : η ∈ F(ξ)} is measurable.

We let F−1 be the subset function defined by

F−1(η) = {ξ ∈ B : η ∈ F(ξ)}.
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If F,G are two subset functions on B then their product is defined by

FG(ξ) =
⋃

η∈G(ξ)

F(η).

The union, intersection and relative complement of two subset functions are defined point-
wise. These constitute subset functions in their own right, namely they are measurable and
finite for almost every ξ ∈ B.

We will be interested in one-parameter families F = {Fr}r>0 of set functions. Note that
F denotes the family while each Fr is a set function. We say that such a family is measurable
if {(ξ, η, r) ∈ B ×B × R>0 : η ∈ Fr(ξ)} is measurable.

We will be interested in averaging over such subset functions. First, let α : E → Aut(X,m)

be a measurable cocycle into the automorphism group of a standard Borel space. In par-
ticular, we require α(ξ, η)α(η, ξ′) = α(ξ, ξ′) (for a.e. ξ ∈ B and every η, ξ′ ∈ [ξ]E). Let
Eα be the induced equivalence relation on B × X. So (ξ, u)Eα(ξ′, u′) if and only if ξEξ′

and α(ξ′, ξ)u = u′.

Let f ∈ Lp(B×X, ν×m) for some p. Given a family of F = {Fr}r>0 of subset functions
for E, we consider the averages

A[f |Fr](ξ, u) := |Fr(ξ)|−1
∑

ξ′∈Fr(ξ)

f(ξ′, α(ξ′, ξ)u)

and the maximal function

M[f |F ](ξ, u) := sup
r>0

A[|f ||Fr](ξ, u).

Our assumption that the equivalence classes [ξ]E are almost always countable, and the
subsets Fr(ξ) ⊂ [ξ]E almost always finite implies that the maximal function is measurable.
We say :

– F satisfies the weak (1, 1)-type maximal inequality if there is a constant C > 0 such
that for all t > 0 and all f ∈ L1(B ×X),

ν ×m({(ξ, u) : M[f |F ](ξ, u) > t}) ≤ C ‖f‖1
t

;

– F satisfies the strong p-type maximal inequality if there is a constant Cp > 0 such that
‖M[f |F ]‖p ≤ Cp‖f‖p for every f ∈ Lp(B ×X);

– F is a pointwise ergodic family in Lp if for every f ∈ Lp(B × X), A[f |Fr] converges
pointwise a.e. to E[f |Eα], the conditional expectation of f on the σ-algebra ofEα-sat-
urated sets (these are the measurable sets which are unions of Eα classes).

Next we provide conditions which imply the conditions above.

A family F = {Fr}r>0 of subset functions onB is regular if there exists a constantC > 0

(called a regularity constant) such that for every r > 0 and a.e. ξ ∈ B,∣∣∣∣⋃
s≤r

F−1
s Fr(ξ)

∣∣∣∣ ≤ C|Fr(ξ)|.
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A subset Φ ⊂ [E] generates E if for a.e. ξ ∈ B and every η ∈ [ξ]E , there is φ ∈ 〈Φ〉 (the
subgroup generated by Φ) such that φ(ξ) = η. The family F is asymptotically invariant if
there exists a countable set Φ ⊂ [E] which generates E such that

lim
r→∞

|Fr(ξ) M φ(Fr(ξ))|
|Fr(ξ)|

= 0 for a.e. ξ,∀φ ∈ Φ.

We now recall the following, which is part of [15, Theorems 2.4-2.6].

T 2.1. – If F is regular then it satisfies the weak (1, 1)-type maximal inequality
and the strong p-type maximal inequality for all p > 1. If, in addition, it is asymptotically
invariant then it is a pointwise ergodic family in Lp (for every p ≥ 1).

Most of the effort in this paper goes towards showing that certain subset functions on
equivalence relations obtained from the action of a hyperbolic group on its boundary are
both regular and asymptotically invariant. Next we explain how these results imply pointwise
ergodic theorems for Γ. We also need to generalize previous results because the action of Γ

on its boundary need not be essentially free.

2.2. From equivalence relations to ergodic sequences

We begin by recalling the definition of the Maharam extension of a general non-singular
action, and the method of deriving ergodic theorems from it.

D 2.1. – The Maharam extension of a measure-class-preserving action
Γ y (B, ν) is the action Γ y (B × R, ν × θ) defined by

γ(ξ, t) := (γξ, t−R(g, ξ)), R(g, ξ) := log

(
dν ◦ g
dν

(ξ)

)
and θ is the measure on R satisfying dθ(t) = etdt. This action is measure-preserving.

If Γ y (B, ν) is ergodic then we say Γ y (B, ν) has type III1 if the Maharam extension
is also ergodic.

D 2.2. – A measure-class preserving action Γ y (B, ν) has uniformly bounded
stabilizers if there is a constant C > 0 such that for a.e. ξ ∈ B, |StabΓ(ξ)| ≤ C where
StabΓ(ξ) = {g ∈ Γ : gξ = ξ}.

T 2.2 (The III1 case). – Let Γ be a countable group and Γ y (B, ν) a measure-
class preserving action on a standard probability space with uniformly bounded stabilizers.
Let T > 0, F = {Fr}r>0 be a measurable family of set functions for the equivalence relationE
onB×[0, T ] (induced from the Maharam extension Γ y B×R as above) and letψ ∈ Lq(B, ν)

be a probability density (so ψ ≥ 0,
∫
ψ dν = 1).

Define probability measures ζr on Γ by

ζr(g) = T−1

∫ T

0

∫
|{w ∈ Γ : w(ξ, t) ∈ Fr(ξ, t)}|−11Fr(ξ,t)(g

−1(ξ, t))ψ(ξ) dν(ξ)dt.

Let p > 1 be such that 1
p + 1

q = 1.

– If F is regular then {ζr} satisfies the strong Lp maximal inequality. If ψ ∈ L∞(B, ν)

then {ζr} satisfies the L logL maximal inequality.
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– If F is regular and asymptotically invariant then {ζr} is a pointwise convergent family
in Lp (and if ψ ∈ L∞(B, ν) then it is pointwise convergent in L logL).

– If F is regular, asymptotically invariant, Γ y (B, ν) is weakly mixing, type III1 and
stable type IIIλ (where either λ = 1 or T is a positive integer multiple of − log(λ) > 0)
then {ζr} is a pointwise ergodic family in Lp (and if ψ ∈ L∞(B, ν) then it is pointwise
ergodic in L logL).

We refer to [16] for background on type and stable type. We say that Γ y (B, ν) is weakly
mixing if for any ergodic pmp action Γ y (X,m), the product action Γ y (B ×X, ν ×m)

is ergodic.

Proof. – To begin, let us assume that Γ y (B, ν) is essentially free. We will show that
this result follows from [16, Theorems 3.1 and 5.1]. By Theorem 2.1, if F is regular then it
satisfies the weak (1, 1)-type maximal inequality and if it is both regular and asymptotically
invariant then it is poinwise ergodic in Lp (for every p ≥ 1).

Let α : E → Γ be the cocycle α(η, ξ) = γ if γξ = η. For (η, ξ) ∈ E, let ωr(η, ξ) =

|Fr(ξ)|−1 if η ∈ Fr(ξ) and ωr(η, ξ) = 0 otherwise. If F is regular then Ω = {ωr} satisfies the
weak (1, 1)-type maximal inequality and the strong Lp maximal inequality (in the sense of
[16, §2.1]). If F is regular and asymptotically invariant, then Ω is a pointwise ergodic family
in Lp (for every p ≥ 1).

Let K = R/TZ act on B × [0, T ] by k(ξ, t) = (ξ, t + k) where t + k is taken modulo T .
By [16, Theorem 5.1], if Γ y (B, ν) is weakly mixing, type III1 and stable type IIIλ (where
either λ = 1 or 0 < T = − log(λ) <∞) then α is weakly mixing relative to the action of K.
The result now follows from [16, Theorem 3.1].

Let us suppose now that Γ y (B, ν) is not necessarily essentially free but does have
uniformly bounded stabilizers. Let Γ y (Y, p) be a nontrivial Bernoulli shift action. This
action is essentially free, pmp and strongly mixing. It therefore enjoys the following mul-
tiplier property: if Γ y (X,m) is any properly ergodic action then the product action
Γ y (X × Y,m × p) is also ergodic. In particular, it is not necessary for Γ y (X,m) to be
probability-measure-preserving.

Observe that the product action Γ y (B×Y, ν×p) is essentially free. Let Γ y B×Y ×R
denote the Maharam extension of Γ y B × Y and Ẽ the induced equivalence relation
on B × Y × [0, T ]. Define the subset function F̃r on B × Y × [0, T ] by F̃r(ξ, y, t) =

{g(ξ, y, t) : g ∈ Γ, g(ξ, t) ∈ Fr(ξ, t)}. Note that

ζr(g) =
1

T

∫∫∫ T

0

|F̃r(ξ, y, t)|−11
F̃r(ξ,y,t)(g

−1(ξ, y, t))ψ(ξ) dtdν(ξ)dp(y).(2.1)

Because Γ y (B, νB) has uniformly bounded stabilizers, there is a constant C > 0 such
that

|Fr(ξ, t)| ≤ |F̃r(ξ, y, t)| ≤ C|Fr(ξ, t)| for a.e. (ξ, y, t).

If F is regular, this implies F̃ := {F̃r}r>0 is also regular. Therefore, the essentially free case
implies that {ζr} satisfies the strong Lp-maximal inequality and, if q = ∞, the L logL-type
maximal inequality.

4 e SÉRIE – TOME 48 – 2015 – No 5



ERGODIC THEOREMS FOR NEGATIVELY CURVED GROUPS 1125

Let us suppose now that F is asymptotically invariant. We will show that F̃ is asymptot-
ically invariant. There exists a countable set Φ ⊂ [E] such that Φ generates E and

lim
r→∞

|φ(Fr(ξ, t)) M Fr(ξ, t)|
|Fr(ξ, t)|

= 0

for a.e. (ξ, t) and every φ ∈ Φ.
Let J : B × Y × [0, T ]→ [0, 1] be a Borel isomorphism and choose

L : B × Y × [0, T ]→ {1, 2, . . . , C}

to satisfy: for a.e. (ξ, y, t)

– if g ∈ StabΓ(ξ, t) and J(ξ, y, t) < J(g(ξ, y, t)) then L(ξ, y, t) < L(g(ξ, y, t));
– max{L(g(ξ, h, t)) : g ∈ StabΓ(ξ, t)} = |StabΓ(ξ, t)|.

For each φ ∈ Φ and n ∈ Z define φ̃n ∈ [Ẽ] by φ̃n(ξ, y, t) = (ξ′, y′, t′) where φ(ξ, t) = (ξ′, t′),
(ξ, y, t)Ẽ(ξ′, y′, t′) and L(ξ, y, t) ≡ L(ξ′, y′, t′) + n mod |StabΓ(ξ, t)|. This is well-defined
almost everywhere. Observe that for any φ ∈ Φ and a.e. (ξ, y, t) ∈ B × Y × [0, T ] if g ∈ Γ

is such that φ(ξ, t) = g(ξ, t) then there exists i ∈ Z so that φ̃i(ξ, y, t) = g(ξ, y, t). Therefore
Φ̃ := {φ̃n : φ ∈ Φ, n ∈ Z} is generating.

This construction implies that for any φ ∈ Φ, n ∈ Z and a.e. (ξ, y, t) ∈ B × Y × [0, T ],
|F̃r(ξ, y, t)| ≤ C|Fr(ξ, t)| and

|φ̃n(F̃r(ξ, y, t)) M F̃r(ξ, y, t)| ≤ C|φ(Fr(ξ, t)) M Fr(ξ, t)|.

So

lim
r→∞

|φ̃n(F̃r(ξ, y, t)) M F̃r(ξ, y, t)|
|F̃r(ξ, y, t)|

= 0

which implies F̃ is asymptotically invariant. So (2.1) and the essentially free case imply {ζr}
is a pointwise convergent family in Lp (and in L logL if q = +∞).

Next let us assume that Γ y B is weakly mixing, type III1 and stable type IIIλ.
Because Γ y Y is weakly mixing and pmp, it follows immediately that the product action
Γ y B × Y is weakly mixing and stable type IIIλ. Because Γ y B×R is ergodic, the action
Γ y (B × R) × Y is also ergodic. But this is isomorphic to the Maharam extension
of Γ y B × Y . Therefore, Γ y B × Y has type III1. The conclusion now follows from
the essentially free case and (2.1).

D 2.3. – Suppose Γ y (B, ν) is a measure-class-preserving action, λ ∈ (0, 1)

and the Radon-Nikodym derivatives satisfy

Rλ(g, ξ) := − logλ

(
dν ◦ g
dν

(ξ)

)
∈ Z

for a.e. ξ ∈ B and g ∈ Γ. In this case, we consider the discrete Maharam extension which is
the action Γ y (B × Z, ν × θλ) defined by

γ(ξ, t) := (γξ, t−Rλ(g, ξ))

where θλ is the measure on Z satisfying θλ({n}) = λ−n. This action is measure-preserving.
If, in addition, Γ y (B, ν) is ergodic then Γ y (B, ν) has type IIIλ if the discrete

Maharam extension is also ergodic. (Type IIIλ is also well-defined if the Radon-Nikodym
derivatives do not satisfy the above condition: see [37] or [16] for background on type.)
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T 2.3 (The IIIλ case). – Let Γ be a countable group and Γ y (B, ν) a measure-
class preserving action on a standard probability space with uniformly bounded stabilizers and
Radon-Nikodym derivatives which satisfy

Rλ(g, ξ) := − logλ

(
dν ◦ g
dν

(ξ)

)
∈ Z

for a.e. ξ ∈ B and g ∈ Γ.
Let F = {Fr}r>0 be a measurable family of set functions for the equivalence relation E

onB×{0, 1, . . . , N−1} (induced from the discrete Maharam extension Γ y B×Z as above)
and let ψ ∈ Lq(B, ν) be a probability density (so ψ ≥ 0,

∫
ψ dν = 1).

Define probability measures ζr on Γ by

ζr(g) = N−1
N−1∑
t=0

∫
|{w ∈ Γ : w(ξ, t) ∈ Fr(ξ, t)}|−11Fr(ξ,t)(g

−1(ξ, t))ψ(ξ) dν(ξ).

Let p > 1 be such that 1
p + 1

q = 1.

– If F is regular then {ζr} satisfies the strong Lp maximal inequality. If ψ ∈ L∞(B, ν)

then {ζr} satisfies the L logL maximal inequality.
– If F is regular and asymptotically invariant then {ζr} is a pointwise convergent family

in Lp (and if ψ ∈ L∞(B, ν) then it is pointwise convergent in L logL).
– If F is regular, asymptotically invariant, Γ y (B, ν) is weakly mixing, type IIIλ and

stable type IIIτ for τ = λm (somem ∈ N such that (N/m) ∈ Z) then {ζr} is a pointwise
ergodic family in Lp (and if ψ ∈ L∞(B, ν) then it is pointwise ergodic in L logL).

Proof. – The essentially free case follows from [16, Theorems 3.1 and 5.2]. The rest of the
proof is analogous to the proof of Theorem 2.2 so we leave it to the reader.

3. Gromov hyperbolic spaces

We now turn to establish some properties of Gromov hyperbolic spaces, the Gromov
boundary and the horofunction boundary. These results will be applied to the case where
(Γ, d) is a nonelementary uniformly quasi-geodesic hyperbolic group.

3.1. The Gromov boundary

Let ( X , d X ) be a δ-hyperbolic space. A sequence {xi}∞i=1 in X is a Gromov sequence if

lim
i,j→∞

(xi|xj)z = +∞

for some (and hence, any) basepoint z ∈ X . Two Gromov sequences {xi}∞i=1, {yi}∞i=1 are
equivalent if limi→∞(xi|yi)z = +∞with respect to some (and hence any) basepoint z. It is an
exercise to show that this defines an equivalence relation (assuming ( X , d X ) is δ-hyperbolic).
The Gromov boundary is the space of equivalence classes of Gromov sequences. We denote it
by ∂ X , leaving the metric implicit. Let X denote X ∪ ∂ X .

The Gromov product extends to ∂ X as follows. Let p, z ∈ X and ξ, η ∈ ∂ X . Define

(ξ|p)z := inf lim inf
i→∞

(xi|p)z, (ξ|η)z := inf lim inf
i→∞

(xi|yi)z
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where the infimums are over all sequences {xi}∞i=1 ∈ ξ, {yi}∞i=1 ∈ η. By [48, Lemma 5.11]

lim sup
i→∞

(xi|yi)z − 2δ ≤ (ξ|η)z ≤ lim inf
i→∞

(xi|yi)z(3.1)

for any sequences {xi}∞i=1 ∈ ξ, {yi}∞i=1 ∈ η. These inequalities also hold if η = p ∈ X and
yi is any sequence with limi→∞ yi = p. According to [48, Proposition 5.12], inequality (1.1)
extends to x, y ∈ ∂ X .

In [19] it is shown that if ε > 0 is sufficiently small and d̄ε : X × X → R is defined by

d̄ε(ξ, η) := e−ε(ξ|η)z

then there exist a metric d̄ on X and constantsA,B > 0 such thatAd̄ε ≤ d̄ ≤ Bd̄ε.Any such
metric is called a visual metric. The topology on X induced by d X agrees with the topology
induced by d̄. Moreover X is dense in X .

3.2. Quasi-conformal measures and horofunctions

Let ( X , d X ) be a δ-hyperbolic metric space. Choose a basepoint x0 ∈ X .

L 3.1. – Let ξ ∈ ∂ X and suppose {yi}, {zi} ⊂ X are two sequences converging to ξ
(w.r.t. the topology on X). Then for any w ∈ X ,

lim sup
i→∞

∣∣∣d X (yi, w)− d X (yi, x0)−
(
d X (zi, w)− d X (zi, x0)

)∣∣∣ ≤ 4δ.

Proof. – Observe that

d X (yi, w)− dX(yi, x0) = d X (w, x0)− 2(yi|w)x0 .

A similar statement holds for zi in place of yi. Thus,∣∣∣d X (yi, w)− d X (yi, x0)−
(
d X (zi, w)− d X (zi, x0)

)∣∣∣ = 2 |(yi|w)x0 − (zi|w)x0 | .

The lemma now follows from (3.1).

For ξ ∈ ∂ X , define hξ : X → R by

hξ(z) := inf lim inf
i→∞

d X (z, yi)− d X (yi, x0)

where the infimum is over all sequences {yi} ⊂ X which converge to ξ. This is the horofunc-
tion associated to ξ (and the basepoint x0). By the previous lemma, if {xi} is any sequence
converging to ξ and z ∈ X is arbitrary then

lim sup
i→∞

∣∣∣hξ(z)− (d X (xi, z)− d X (xi, x0)
)∣∣∣ ≤ 4δ.(3.2)

Together with 3.1 this implies: if ξ ∈ ∂ X and z ∈ X then

d X (z, x0)/2− hξ(z)/2− 4δ ≤ (z|ξ)x0 ≤ d X (z, x0)/2− hξ(z)/2.(3.3)

D 3.2 (Quasi-conformal measure). – Suppose (Γ, d) is a Gromov hyperbolic
group. A Borel probability measure ν on ∂Γ is quasi-conformal if there are constants v, C > 0

such that for any g ∈ Γ and a.e. ξ ∈ ∂Γ,

C−1 exp(−vhξ(g−1)) ≤ dν ◦ g
dν

(ξ) ≤ C exp(−vhξ(g−1)).

We will call v > 0 the quasi-conformal constant associated to ν.
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It is well-known that if d comes from a word metric on Γ (or more generally, any geodesic
metric) then there is a quasi-conformal measure on ∂Γ [29]. More generally:

L 3.3. – Let (Γ, d) be a non-elementary, uniformly quasi-geodesic, hyperbolic group.
Then there exists a quasi-conformal measure ν on ∂Γ. Moreover, any two quasi-conformal
measures are equivalent. Also if v is the quasi-conformal constant of ν then there is a constant
C > 0 such that

1. If B(g, r) denotes the ball of radius r centered at g ∈ Γ then

C−1evr ≤ |B(g, r)| ≤ Cevr, ∀g ∈ Γ, r > 0.

2. C−1e−vn ≤ ν ({ξ′ ∈ ∂Γ : (ξ|ξ′)e ≥ n}) ≤ Ce−vn, ∀n > 0, ξ ∈ ∂Γ.

Proof. – This follows immediately from [10, Theorem 2.3] and the fact that any non-
elementary uniformly quasi-geodesic hyperbolic group is a proper quasi-ruled hyperbolic
space by Lemma 3.4 below.

The paper [10] contains many results for hyperbolic spaces under the assumption that
these spaces are quasi-ruled. To be precise a metric space ( X , d X ) is quasi-ruled if there are
constants (τ, λ, c) such that ( X , d X ) is (λ, c)-quasi-geodesic and for any (λ, c)-quasi-geodesic
γ : [a, b]→ X and any a ≤ s ≤ t ≤ u ≤ b,

d X (γ(s), γ(t)) + d X (γ(t), γ(u))− d X (γ(s), γ(u)) ≤ 2τ.

L 3.4. – If ( X , d X ) is (1, c)-quasi-geodesic then it is quasi-ruled.

Proof. – If γ : [a, b]→ X is any (1, c)-quasi-geodesic then for any a ≤ s ≤ t ≤ u ≤ b,

d X (γ(s), γ(t)) + d X (γ(t), γ(u))− d X (γ(s), γ(u)) ≤ 3c.

So we may set τ = 3c/2.

The action of Γ on its boundary need not be essentially free. For example, if Γ0 is word
hyperbolic and F is a finite group then F , considered as a subgroup of Γ0 ×F , acts trivially
on the Gromov boundary of Γ0 × F . However, it does have uniformly bounded stabilizers
(in the sense of Definition 2.2), a condition which is crucial to Theorems 2.2 and 2.3.

L 3.5. – Let (Γ, d) be a non-elementary uniformly quasi-geodesic hyperbolic group
and ν be a quasi-conformal measure on ∂Γ. Then there is a constant C > 0 such that ν-a.e.
ξ ∈ ∂Γ, |StabΓ(ξ)| ≤ C.

Proof. – Let g ∈ Γ have infinite order. It is well-known that there exist distinct ele-
ments {g−, g+} ⊂ ∂Γ such that limn→∞ gn = g+ and limn→∞ g−n = g−. Moreover if
ξ ∈ ∂Γ \ {g−, g+} then limn→∞ gnξ = g+ and limn→∞ g−nξ = g−.

Let A ⊂ ∂Γ be the union of the points g− and g+ for all infinite-order elements g ∈ Γ.
Because ν has no atoms (by Lemma 3.3) and A is a countable set, ν(A) = 0. Moreover, if
ξ ∈ ∂Γ\A and g is any infinite order element then g /∈ StabΓ(ξ) since limn→∞ gnξ = g+ 6= ξ.

Thus if g ∈ StabΓ(ξ) and ξ ∈ ∂Γ \ A then g has finite order, i.e., StabΓ(ξ) is a
torsion subgroup. Because the Tits alternative holds for hyperbolic groups [35], every torsion
subgroup of Γ is finite. It is well-known (see e.g., [11], [19] or [17]) that there is a constant
C > 0 such that for every finite subgroupH < Γ, |H| ≤ C. This proves |StabΓ(ξ)| ≤ C.
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3.3. The type of the boundary action

Let ∂Γ denote the Gromov boundary of Γ and let ν be a quasi-conformal measure on ∂Γ

with quasi-conformal constant v. By [13], Γ y (∂Γ, ν) is type IIIλ for some λ ∈ (0, 1].

L 3.6. – Suppose λ ∈ (0, 1). Then there exists a quasi-conformal Borel probability
measure ν′ on ∂Γ such that if

Rλ(g, ξ) = − logλ

(
dν′ ◦ g
dν′

(ξ)

)
then Rλ(g, b) ∈ Z for a.e. ξ ∈ ∂Γ.

Proof. – By [2] Γ y (∂Γ, ν) is amenable. So by [28], the orbit-equivalence relation on ∂Γ

is generated by a single measure-class-preserving Borel isomorphism T : ∂Γ → ∂Γ. If
λ ∈ (0, 1) then by [37, Proposition 2.2], there exists a Borel probability measure ν′ on ∂Γ

which is equivalent to ν such that if

Rλ(g, ξ) = − logλ

(
dν′ ◦ g
dν′

(ξ)

)
then Rλ(g, b) ∈ Z for a.e. ξ ∈ ∂Γ and every g ∈ Γ. A careful look at the proof reveals
that ν′ can be chosen so that the Radon-Nikodym derivatives between ν and ν′ are bounded.
More precisely, there is a constant C > 0 such that

C−1 ≤ dν′

dν
≤ C

almost everywhere. Therefore ν′ is also quasi-conformal.

We now assume that ν = ν′ satisfies the lemma above. By quasi-conformality, there exists
a constant C > 0 such that

|Rλ(g, ξ)− v log(λ)−1hξ(g
−1)| ≤ C.

In order to streamline the exposition, let L denote either R or Z depending on whether λ = 1

or λ ∈ (0, 1). Also let

R1(g, ξ) = R(g, ξ) = log

(
dν ◦ g
dν

(ξ)

)
.

By quasi-conformality,
|R1(g, ξ) + vhξ(g

−1)| ≤ C
for some constant C > 0. So if we let vλ = −v log(λ)−1 for λ ∈ (0, 1) and v1 = v , then we
can say

|Rλ(g, ξ) + vλhξ(g
−1)| ≤ C(3.4)

for every λ ∈ (0, 1], g ∈ Γ and a.e. ξ ∈ ∂Γ.
Next we set some useful notation. Let θλ be the measure on L given by dθ1(t) = etdt (if

λ = 1) and θλ({n}) = λ−n if λ ∈ (0, 1). The Maharam extension of the action Γ y (∂Γ, ν)

is the action Γ y (∂Γ× L, ν × θλ) given by

g(ξ, t) = (gξ, t−Rλ(g, ξ)).

This action preserves the measure ν × θλ.
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Let L+ denote the set of positive elements of L. Also, for A < B ∈ L, we will let [A,B)L
denote the half-open interval in L from A to B. So if L = Z, then

[A,B)L = {A,A+ 1, . . . , B − 1}.

4. Volume growth and regularity

The purpose of this section is to prove Theorem 1.1 by applying Theorems 2.2, 2.3 and
estimating the cardinality of the intersection of balls and horoshells.

4.1. Regularity of the averaging sets

Recall the definition of Rλ(g, b) and the Maharam extension Γ y ∂Γ × L from the
previous section.

D 4.1. – Fix a > 0, T ∈ L+ and, for (ξ, t) ∈ ∂Γ× [0, T )L, let

Γr(ξ, t) = {g ∈ Γ : d(e, g)− hξ(g)− t ≤ r, g−1(ξ, t) ∈ ∂Γ× [0, T )L}
Br(ξ, t) = {g−1(ξ, t) : g ∈ Γr(ξ, t)}
Sa,r = Br \Br−a.

We let B = {Br}r>0,Sa = {Sa,r}r>0 denote the corresponding families of subset
functions. Although these definitions depend on T we will leave this dependence implicit in
the notation.

We will show that B and Sa are regular if a, T are sufficiently large. We begin with an
estimate of |Br|.

L 4.2. – There exist constants a0, T0 > 0 such that if T ≥ T0, a ≥ a0 then for a.e.
(ξ, t) ∈ ∂Γ× [0, T )L

C−1evr/2 ≤ |Br(ξ, t)|, |Γr(ξ, t)|, |Sr,a(ξ, t)| ≤ Cevr/2 ∀r ≥ 2T + 2a

where the constant C > 0 may depend on T but not on ξ or r.

Proof. – Because stabilizers are uniformly bounded by Lemma 3.5, C−1
0 |Γr(ξ, t)| ≤

|Br(ξ, t)| ≤ C0|Γr(ξ, t)| for some C0 > 1. Because Sr,a = Br \ Br−a, the bound for Br
implies the bound for Sr,a. So it suffices to estimate |Γr(ξ, t)|.

By (3.4) there is a constant C1 > 1 such that for a.e. (ξ, t) ∈ ∂Γ× [0, T )L, if g ∈ Γ is such
that g−1(ξ, t) ∈ ∂Γ× [0, T )L, then

|Rλ(g−1, ξ)| ≤ C1|hξ(g)|+ C1, |hξ(g)| ≤ C1|Rλ(g−1, ξ)|+ C1.

Moreover, 0 ≤ t ≤ T implies |Rλ(g−1, ξ)| ≤ T . We may assume T > 1. So,

B (e, r − T − C1) ∩ h−1
ξ

[
t− T + C1

C1
,
t− C1

C1

]
⊂ Γr(ξ, t)

⊂ B
(
e, r + (C1 + T )2

)
∩ h−1

ξ [−C1 − C1T,C1 + C1T ]

where B(e, r) is the ball of radius r centered at the identity in Γ.
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In [13, Lemma 6.3], it is shown that there is a constant T0 > 0 such that if T2 ≥ T1 are
such that T2 − T1 ≥ T0, ξ ∈ ∂Γ and r ≥ max(|T1|, |T2|)− 2c then

C−1ev(r+T2)/2 ≤ |B(e, r) ∩ h−1
ξ [T1, T2]| ≤ Cev(r+T2)/2

where C > 0 is a constant which may depend on T1, T2 but not on r, ξ. So the inclusions
above imply the lemma.

L 4.3. – Let T0 > 0 be as in Lemma 4.2. If T > T0 then the family B = {Br}r>0

is regular.

Proof. – Fix k0, k1, k2 ∈ ∂Γ × [0, T )L such that k1 ∈ Br(k0) ∩ Br(k2). To make the
notation simpler we will write x . y if x ≤ y + C where C is a constant that may depend
on T and (Γ, d) but not on r, k0, k1 or k2. Of course, x & y means y . x and x ≈ y means
both x . y and y . x.

Let g1 ∈ Γr(k0) be such that g−1
1 k0 = k1 and let g2 ∈ Γ be such that g−1

2 g1 ∈ Γr(k2) and
g−1

1 g2k2 = k1. Note d(e, g1) . r and d(g−1
2 g1, e) = d(g1, g2) . r.

Let k0 = (ξ, t). Because ν is quasi-conformal and g−1
1 k0 = k1 ∈ ∂Γ × [0, T )L, we must

have |hξ(g1)| . v−1T which implies hξ(g1) ≈ 0. Because g−1
1 g2k2 = k1 = g−1

1 k0, we have
k2 = g−1

2 k0. Therefore, hξ(g2) ≈ 0 as well.

C. – We have d(g2, e) . r.

Proof of claim. – By δ-hyperbolicity,

(e|g2)g1 & min{(e|ξ)g1 , (ξ|g2)g1}.

So either

2(e|g2)g1 = d(e, g1) + d(g2, g1)− d(e, g2) & 2(e|ξ)g1 ≈ d(e, g1) + hξ(g1) ≈ d(e, g1)

which implies
d(e, g2) . d(g2, g1) . r

or

2(e|g2)g1 = d(e, g1)+d(g2, g1)−d(e, g2) & 2(ξ|g2)g1 ≈ hξ(g1)+d(g2, g1)−hξ(g2) ≈ d(g2, g1)

which implies
d(e, g2) . d(e, g1) . r.

This proves the claim.

The claim implies d(e, g2) − hξ(g2) − t . r. Moreover, g−1
2 k0 = g−1

2 g1k1 = k2. So
g2 ∈ Γr+C0(k0) (for some constant C0 > 0 which may depend on T and (Γ, d) but not on r
or the ki’s). Thus k2 ∈ Br+C0

(k0). Because k0, k1, k2 are arbitrary, this establishes that for
any k0 ∈ ∂Γ× [0, T )L,

Br+C0
(k0) ⊃

⋃
s≤r

B−1
s Br(k0).

By Lemma 4.2, there is a constant C1 > 0 such that
∣∣Br+C0

(k0)
∣∣ ≤ C1 |Br(k0)|. Therefore,∣∣∣∣∣∣

⋃
s≤r

B−1
s Br(k0)

∣∣∣∣∣∣ ≤ C1 |Br(k0)| .
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Since C1 does not depend on r or k0, B is regular.

L 4.4. – Let W be a set. Let F = {Fr}r>0 be a regular family of subset functions
on W . Suppose there is a constant C > 0 and a family G = {Gr}r>0 of subset functions on W
that satisfies Gr(w) ⊂ Fr(w) and |Gr(w)| ≥ C|Fr(w)| for every w ∈W . Then G is regular.

Proof. – Let CF be a regularity constant for F . Then for any r > 0 and w ∈W ,

|
⋃
s≤r

G−1
s Gr(w)| ≤ |

⋃
s≤r

F−1
s Fr(w)| ≤ CF |Fr(w)| ≤ C−1CF |Gr(w)|.

C 4.5. – Let a0, T0 > 0 be as in Lemma 4.2. If a > a0 and T > T0 then the
family Sa = {Sr,a}r>0 is regular. Moreover, suppose ε0 > 0 and

ε : ∂Γ× [0, T )L × [0,∞)→ [−ε0, ε0]

is any function. Define B̃r(ξ, t) := Br+ε(ξ,t,r)(ξ, t) and S̃r,a(ξ, t) := B̃r(ξ, t) \ B̃r−a(ξ, t)

then B̃ := {B̃r}r>0 and S̃a := {S̃r,a}r>0 are regular.

Proof. – This follows immediately from Lemmas 4.2 - 4.4.

C 4.6. – Let ψ ∈ Lq(∂Γ, ν) be a probability distribution (so ψ ≥ 0 and∫
ψ dν = 1). For (ξ, t) ∈ ∂Γ× [0, T )L, let

Γr,a(ξ, t) := {g ∈ Γ : g−1(ξ, t) ∈ Sr,a(ξ, t)}.

Define

κψr,a(g) =
1

T

∫ T

0

∫
|Γr,a(ξ, t)|−11Γr,a(ξ,t)(g

−1)ψ(ξ) dν(ξ)dt.

If a is sufficiently large then {κψr,a}r>0 satisfies the strongLp maximal inequality for all p > 1

with 1
p + 1

q ≤ 1. Moreover, if ψ ∈ L∞(∂Γ, ν), then {κψr,a}r>0 satisfies the L logL maximal
inequality.

Proof. – This follows from the previous corollary, Lemma 3.5 and Theorem 2.2.

4.2. Bounding the ball averages

We now turn to show that when choosing ψ = 1, the integral κ1
r,a of the averaging

sets (defined above) dominates the uniform measure βr on the group. A preliminary step
is to show that κ1

r,a dominates the measure uniformly distributed on a spherical shell
Sr,a = Sr,a(e).

To that end, for each r, b > 0, let ζr,b denote the probability measure on Γ which is
distributed uniformly on the spherical shell B(e, r− a/2 + b/2) \B(e, r− a/2− b/2). Then
the following estimate holds.

P 4.7. – For b sufficiently large (depending on (Γ, d)) and for a, T sufficiently
large (depending on b and (Γ, d)) there is a constantC > 0 (which may depend on a, b, T) such
that ζr,b ≤ Cκ1

r,a for all r > 0.

To prove Proposition 4.7, we need the following geometric lemmas.

L 4.8. – There is a constant C > 0 such that for any g ∈ Γ there exists η ∈ ∂Γ with
|hη(g)| ≤ C.
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Proof. – We have:

C 1. – There is a constant C0 > 0 such that for any g ∈ Γ and r > 0

ν({ξ ∈ ∂Γ : (ξ|g)e > r}) ≤ C0e
−vr.

Proof of Claim 1. – If ξ, η ∈ ∂Γ satisfy (ξ|g)e, (η|g)e > r then by (1.1),

(ξ|η)e ≥ min{(ξ|g)e, (η|g)e} − δ > r − δ.

The claim now follows from Lemma 3.3.

C 2. – There is a constant R > 0 such that for any x, y, z ∈ Γ there exists η ∈ ∂Γ

such that (η|x)z, (η|y)z ≤ R.

Proof of Claim 2. – It follows from Claim 1 that there is anR > 0 (independent of x, y, z)
such that

ν({ξ ∈ ∂Γ : (ξ|z−1x)e > R}) + ν({ξ ∈ ∂Γ : (ξ|z−1y)e > R}) < 1.

Therefore, there is an ξ ∈ ∂Γ such that (ξ|z−1x)e, (ξ|z−1y)e ≤ R. But

(ξ|z−1x)e = (zξ|y)z, (ξ|z−1y)e = (zξ|y)z.

So set η = zξ.

Now let g ∈ Γ. Because |hξ(g)| ≤ d(e, g) (for any g ∈ Γ, ξ ∈ ∂Γ) we may assume
without loss of generality, that d(e, g) > c where c > 0 is the quasi-geodesicity constant.
Let γ : I → Γ be a (1, c)-quasi-geodesic from e to g (where I = [0, r] is some interval in the
real line). Let z = γ(d(e, g)/2). By Claim 2, there exist a constant R > 0 and η ∈ ∂Γ such
that (η|g)z, (η|e)z ≤ R. Using (3.1), 3.2 we obtain:

2R ≥ 2(η|g)z = hη(z) + d(g, z)− hη(g) +O(δ)

2R ≥ 2(η|e)z = hη(z) + d(e, z) +O(δ).

Because d(g, z) = d(e, z) +O(c),

2R ≥ |2(η|g)z − 2(η|e)z| ≥ |hη(g)|+O(δ + c).

L 4.9. – There exists a constant T1 > 0 such that for any T > T1 and any g ∈ Γ,

C−1 exp(−vd(e, g)/2) ≤ ν({ξ ∈ ∂Γ : |hξ(g)| ≤ T}) ≤ C exp(−vd(e, g)/2)

for some constant C > 0 that is independent of g (but may depend on T).

Proof. – By Lemma 4.8, there exist a constant C0 > 0 and ξ ∈ ∂Γ satisfying
|hξ(g)| ≤ C0. Let T1 = 10δ + C0 and T > T1. In order to prove a lower bound, by
Lemma 3.3, it suffices to prove

{η ∈ ∂Γ : (ξ|η)e ≥ d(e, g)/2 + 2T} ⊂ {η ∈ ∂Γ : |hη(g)| ≤ T}).

So suppose η ∈ ∂Γ satisfies (ξ|η)e ≥ d(e, g)/2 + 2T . It suffices to show |hη(g)| ≤ T . By
equation (3.3),

(ξ|g)e + δ ≤ d(e, g)/2− hξ(g)/2 + δ < d(e, g)/2 + 2T ≤ (ξ|η)e.

Thus Gromov’s inequality (1.1) and (3.3) implies

(ξ|g)e + δ ≥ min{(ξ|η)e, (η|g)e} = (η|g)e ≥ d(e, g)/2− hη(g)/2− 4δ.
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So
d(e, g)/2− hξ(g)/2 + δ ≥ (ξ|g)e + δ ≥ d(e, g)/2− hη(g)/2− 4δ

implies hη(g) ≥ hξ(g)− 10δ ≥ −C0 − 10δ.
Similarly,

(η|g)e + δ ≤ d(e, g)/2− hη(g)/2 + δ ≤ d(e, g)/2 + C0/2 + 6δ < d(e, g)/2 + 2T ≤ (η|ξ)e.

Thus Gromov’s inequality (1.1) and (3.3) implies

(η|g)e + δ ≥ min{(η|ξ)e, (ξ|g)e} = (ξ|g)e ≥ d(e, g)/2− hξ(g)/2− 4δ.

So
d(e, g)/2− hη(g)/2 + δ ≥ (η|g)e + δ ≥ d(e, g)/2− hξ(g)/2− 4δ

implies
hη(g) ≤ hξ(g) + 10δ ≤ C0 + 10δ.

Thus |hη(g)| ≤ C0 + 10δ ≤ T as required.
Note

(ξ|g)e = (1/2)(d(e, g)− hξ(g)) +O(δ) ≤ d(e, g)/2 + C0/2 +O(δ).

Suppose η ∈ ∂Γ satisfies (ξ|η)e > max{d(e, g)/2, (ξ|g)e + δ}. Then

(η|g)e ≥ min{(η|ξ)e, (ξ|g)e} − δ = (ξ|g)e − δ.

Similarly,
(ξ|g)e ≥ min{(ξ|η)e, (η|g)e} − δ.

Since (ξ|η)e > (ξ|g)e + δ, we must have (ξ|g)e ≥ (η|g)e − δ. Thus (ξ|g)e = (η|g)e + O(δ).
Since (ξ|g)e = (1/2)(d(e, g)−hξ(g))+O(δ) (and a similar formula holds for η), this implies
hξ(g) = hη(g) +O(δ).

To obtain the upper bound, suppose that η, ξ ∈ ∂Γ satisfy |hξ(g)|, |hη(g)| ≤ R for some
constant R > 0. Then

(ξ|η)e ≥ min{(ξ|g)e, (η|g)e} − δ ≥ d(e, g)/2−R/2 +O(δ)

implies that for R > 0 large enough

{η′ ∈ ∂Γ : (ξ|η′)e ≥ d(e, g)/2−R} ⊃ {η′ ∈ ∂Γ : |hη′(g)| ≤ R}).

Lemma 3.3 now implies the upper bound.

Proof of Proposition 4.7. – Recall that by Lemma 3.3, C−1evr ≤ |B(e, r)| ≤ Cevr for all
r > 0. Choose b > max

{
a0,

1
v

logC
}

, T2 ≥ max(T0, T1), T ≥ 10T2 and a > 2(b+T ) where
a0, T0 are as in Lemma 4.2 and T1 is as in Lemma 4.9.

By definition, ζr,b is uniformly distributed on B(e, r − a/2 + b/2) \B(e, r − a/2− b/2).
It follows that

|B(e, r − a/2 + b/2) \B(e, r − a/2− b/2)| ≥ C−1ev(r−a/2+b/2) − Cev(r−a/2−b/2)

= ev(r−a/2)
(
C−1 − Ce−2vb

)
≥ C(v, b)ev(r−a/2).

Therefore, for each g ∈ Γ,

ζr,b(g) ≤ |B(e, r − a/2 + b/2) \B(e, r − a/2− b/2)|−1 ≤ C(v, b)−1ea/2e−vr ,
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so that indeed ζr,b(g−1) ≤ C ′ exp(−vr) for some constant C ′ > 0 and all r sufficiently large,
provided a and b satisfy the conditions above.

On the other hand, Lemma 4.2 implies |Γr,a(ξ, t)| ≤ C exp(vr/2) for some C > 0 (and
every (ξ, t) ∈ ∂Γ× [0, T )L). So,

κ1
r,a(g) =

1

T

∫ T

0

∫
|Γr,a(ξ, t)|−11Γr,a(ξ,t)(g

−1) dν(ξ)dt

≥ C−1 exp(−vr/2)
1

T

∫ T

0

ν({ξ ∈ ∂Γ : g−1 ∈ Γr,a(ξ, t)}) dt.

Definition 4.1 implies that g ∈ Γr,a(ξ, t) if and only if:

r − a < d(e, g)− hξ(g)− t ≤ r, t−Rλ(g−1, ξ) ∈ [0, T )L.

Because ν is quasi-conformal, there is a constant ρ ≥ 1 such that

|Rλ(g−1, ξ)| ≤ ρ|hξ(g)|+ ρ

for every ξ ∈ ∂Γ, g ∈ Γ. By choosing T larger if necessary, we may assume T > 2ρT2 + 2ρ.
Now suppose (ξ, t) ∈ ∂Γ × [0, T )L, g ∈ B(e, r − a/2 + b/2) \ B(e, r − a/2 − b/2),

ρT2 + ρ ≤ t < T − ρT2 − ρ and |hξ(g)| ≤ T2. Then

r − a < r − a/2− b/2− T ≤ r − a/2− b/2− T2 − (T − ρT2 − ρ)

≤ d(e, g)− hξ(g)− t ≤ r − a/2 + b/2 + T2 ≤ r.

Also
|Rλ(g−1, ξ)| ≤ ρT2 + ρ⇒ t+ hξ(g) ∈ [0, T )L.

So g ∈ Γr,a(ξ, t). Lemma 4.9 now implies

κ1
r,a(g) ≥ C−1 exp(−vr/2)

1

T

∫ T

0

ν({ξ ∈ ∂Γ : g−1 ∈ Γr,a(ξ, t)}) dt

≥ C−1 exp(−vr/2)

(
T − 2ρT2 − 2ρ

T

)
ν({ξ ∈ ∂Γ : |hξ(g)| ≤ T2})

≥ C−3 exp(−vr)

for some (possibly larger) constant C > 0. So ζr,b(g) ≤ C4κ1
r,a(g) as required.

4.3. Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. – It follows from Proposition 4.7 that if Γ y (X,m) is any
probability-measure-preserving action and f ∈ Lp(X,m) is nonnegative then
ζr,b(f) ≤ Cκ1

r,a(f). By Corollary 4.6 there exist constants Cp > 0 (p ≥ 1) such that
‖Mζ [f ]‖p ≤ C‖Mκ[f ]‖p ≤ CCp‖f‖p if p > 1 where

Mζ [f ] = sup
r>0

ζr,b(|f |), Mκ[f ] = sup
r>0

κ1
r,a(|f |).

Similarly, if f ∈ L logL(X,m) then ‖Mζ [f ]‖1 ≤ CC1‖f‖L logL. Now let βr be the proba-
bility measure on Γ uniformly distributed over the ball of radius r centered at the identity.
Let Mβ [f ] = supr>0 βr(|f |). Because βr can be represented as a convex linear combination
of probability measures {ζt,b}t>0, it follows that Mβ [f ] ≤ Mζ [f ]. Thus Mβ [f ] ≤ CCp‖f‖p
if f ∈ Lp(X,m) and Mβ [f ] ≤ CC1‖f‖1 if f ∈ L logL(X,m) as claimed.
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As to the averages σr,a, recall that by Lemma 3.3,

C−1evr ≤ |B(e, r)| ≤ Cevr , r > 0.

So

|B(e, r + a) \B(e, r − a)| ≥ C−1ev(r+a) − Cev(r−a)

=
(
C−1 − Ce−2va

)
ev(r+a) = C(v, a)ev(r+a).

Hence choosing a sufficiently large, σr,a ≤ C ′(v, a)βr+a for some constant C ′(v, a) as prob-
ability measures on Γ, and hence the maximal inequalities for βr imply the maximal inequal-
ities for σr,a. Since µr,a are convex combinations of σr,a, the strong maximal inequalities
in Lp, p > 1 and in L logL hold for them as well.

We now consider a finite symmetric generating set S ⊂ Γ and its associated word-metric.
Recall that σn denotes the uniform probability measure on the sphere Sn = Sn(e) =

{g ∈ Γ : |g| = n} and βn denotes the uniform probability measure on the ball
Bn = Bn(e) = {g ∈ Γ : |g| ≤ n}.

Before proceeding with the proof of Theorem 1.2, we claim that for word metrics
Lemma 3.3 can be given a sharper form, as follows.

P 4.10. – In a non-elementary word hyperbolic group (Γ, S), word metric
spheres satisfy, for some constant C0 ≥ 1

(4.1) C−1
0 evn ≤ |Sn(e)| ≤ C0e

vn , n ∈ N.

R 4.11. – Let us note that the estimateC−1evn ≤ |Bn(e)| ≤ Cevn, n ∈ N, for the
growth of balls of geodesic hyperbolic metrics was established by Coornaert in [29, Thm. 7.2].
In fact, the discussion there establishes a stronger result, namely that there exists a fixed
constant c ≥ 0 such that annuli of fixed width c satisfy C−1evn ≤ |Sn,c(e)| ≤ Cevn , n ∈ N
(see the proof of Prop. 6.4 for the upper bound, and the proof of Théorème 7.2 for the
lower bound). Curiously, in [25, Thm. 4.12], [12, Thm. 4.11] and [45, §3, Proof of Lem. 1]
Coornaert’s theorem is quoted as applying to the spheres Sn and not only to the balls Bn.
In [24, Proof of Lemma 3.4.2] the number of elements in word-metric spheres is stated as
p(n)qn + O(qn1 ) with q1 < q and p(n) a polynomial, but this statement fails for certain
hyperbolic groups, for example Za ∗ Zb, with S = (Za ∪ Zb) \ {e}, and a > b > 2, see
Remark 4.12 below.

We are not aware of a general proof of the validity of (4.1) for general hyperbolic groups.
This estimate does hold for word metric spheres, but its proof requires an additional argu-
ment. Given the situation described in the foregoing remark, it may be useful to explain this
argument briefly.

Proof of Proposition 4.10. – It was proved by Cannon that fixing a total order on the
generating set S, the language L of lexicographically first geodesics is a prefix-closed regular
language. Thus the number of elements of Γ of word-length n is the same as the numberLn of
words of length n (with distinguished first letter) in a prefix-closed regular language (see [25]
and [24] for a complete discussion). According to [31, Theorem V3], this implies the existence
of an integer D ≥ 1 such that for every 0 ≤ r < D, one of the following alternatives holds.
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Either for the residue class r modulo D, the sequence {LkD+r}k∈N is eventually zero, or the
sequence is given by the following expression, for all n ≥ n0

Ln = Pr(n)λnr +

Nr∑
j=1

pj,r(n)λnj,r , n ≡ r (mod D)

with Pr a non-zero polynomial, λr > |λj,r|, and pj,r polynomials, 1 ≤ j ≤ Nr. Thus when
the sequence is not eventually zero, it satisfies the estimate

Ln = Pr(n)λnr +O (ξnr ) with 0 ≤ ξr < λr , n ≡ r (mod D).

Since Γ is non-elementary, and therefore infinite, when Ln = |Sn| is the number of elements
in the sphere of radius n, it is not eventually zero along any subseqeunce, so each of the
exponents λr is strictly positive, 0 ≤ r < D. Furthermore, all the exponents λr are equal
to one another in this case. Indeed, for all n ∈ N we have Sn+1 ⊂ Sn · S so that the
ratio between |Sn+1| and |Sn| is bounded by |S|, and similarly the ratio between |Sn+r| and
|Sn| is bounded by |Sr|. Hence λr is constant for 0 ≤ r < D, and then looking at the
same ratios again, we can conclude that all the polynomials Pr(n) have the same degree,
which we denote by m. Thus we can conclude that for some C1 > 1 we have the estimate
C−1

1 nmλn ≤ |Sn| ≤ C1n
mλn for every n ∈ N. Let us denote log λ = v1. Since

|Sn| ≤ |Bn| ≤ Cevn, we have v1 ≤ v. Conversely, since |Bn| =
∑n
k=0 |Sk| we have

C−1evn ≤ |Bn| ≤ C1

n∑
k=0

kmev1k ≤ C2n
mev1n

so that v1 ≥ v. We note in passing that the foregoing proof of the equality v1 = v

does not really require Coornaert’s result on the growth of balls, and follows simply from
v = limn→∞

1
n log |Bn|. However, our final argument, namely the fact that the degree m of

the polynomials in question is in fact zero, does depend on the upper bound in Coornaert’s
result. Indeed, since v1 = v, the fact that m = 0 follows from the inequality

Cevn ≥ |Bn| ≥ |Sn| ≥ C−1
1 nmevn.

The final result on the growth function of the spheres, then, is that there exist D positive
constants s0, . . . sD−1 so that

|Sn| = sre
vn +O

(
ekn
)

with k < v , n ≡ r (mod D).

This completes the proof of estimate (4.1) and Proposition 4.10.

R 4.12. – 1. We note that it is possible that the constants sr appearing above
will be different from one another. Indeed, this is the case in the example noted above,
namely Za ∗ Zb, with S = (Za ∪ Zb) \ {e}, and a > b > 2. Here D = 2,
λ =

√
(a− 1)(b− 1), and |S2k| = 2[(a− 1)(b− 1)]k, |S2k+1| = (a+ b− 2)[(a− 1)(b− 1)]k.

2. For general hyperbolic metrics, it is not known whether the sequence {|Sn| e−vn}n∈N
(where v is the exponential rate of growth of the balls) has finitely many accumulation
points or not. We thank Koji Fujiwara for bringing this problem to our attention.

Proof of Theorem 1.2. – It follows immediately from (4.1) that σn ≤ C ′βn as probability
measures on the group Γ, and so {σn}∞n=1 satisfies all the maximal inequalities satisfied
by {βn}∞n=1. Since µn is a convex combination of the spheres σk, 0 ≤ k ≤ n, it follows

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1138 L. BOWEN AND A. NEVO

that {µn}∞n=1 satisfies the strong maximal inequalities satisfied by {σn}∞n=1, namely in Lp,
p > 1 and in L logL. Pointwise almost sure convergence of πX(µn)f for bounded functions
f ∈ L∞(X,m) has been established recently in [22, Cor. 1]. Because L∞(X,m) is norm-
dense in Lp(X,m), standard arguments using the maximal inequality imply that πX(µn)f

converges almost surely for every f ∈ Lp, 1 < p ≤ ∞ and inL logL. Finally, given pointwise
convergence for Lp-functions, as well as the maximal inequality, norm convergence in Lp,
1 ≤ p < ∞ (and in L logL), is a straightforward consequence of Lebesgue’s dominated
convergence theorem. This completes the proof of Theorem 1.2.

5. Asymptotic invariance

In order to prove Theorem 1.3, we assume for the rest of the paper that the horofunc-
tion boundary coincides with the Gromov boundary of (Γ, d). This means that whenever
{gi}∞i=1 ⊂ Γ converges to a point ξ ∈ ∂Γ then the horofunction

hξ(g) := lim
i→∞

d(gi, g)− d(gi, e)

is well-defined. In particular, it depends on {gi}∞i=1 only through ξ.

DefineBr andSr,a as in Definition 4.1 for some T ∈ L+ and a > 0 with a ≥ a0, T ≥ T0

(where a0, T0 are as in Lemma 4.2). Let Γ y (∂Γ × L, ν × θλ) be the Maharam extension
and let E be the induced equivalence relation on ∂Γ × [0, T )L (notational conventions are
explained in §3.3). So (ξ, t)E(ξ′, t′)⇔ ∃g ∈ Γ such that g(ξ, t) = (ξ′, t′).

Most of the work in proving Theorem 1.3 boils down to the next result the proof of which
is the goal of this section.

T 5.1. – Let a ≥ a0, T ≥ T0 where a0, T0 are as in Lemma 4.2. For every
ε0, r > 0 and (ξ, t) ∈ ∂Γ × [0, T ] there exists 0 ≤ ε(ξ, t, r) < ε0 such that if B̃r(ξ, t) :=

Br+ε(ξ,t,r)(ξ, t) and S̃r,a := B̃r(ξ, t)\ B̃r−a(ξ, t) then B̃ := {B̃r}r>0 and S̃a := {S̃r,a}r>0

are asymptotically invariant.

5.1. The leafwise metric on the equivalence classes

To begin the proof, we need a leafwise metric on E: given (ξ, t), (ξ′, t′) ∈ ∂Γ × [0, T )L
with (ξ, t)E(ξ′, t′), let dΓ((ξ, t), (ξ′, t′)) be the minimum value of d(g, e) over all g ∈ Γ with
g(ξ, t) = (ξ′, t′). Most of the work in showing Theorem 5.1 boils down to the next two
propositions.

P 5.1. – For (ξ, t) ∈ ∂Γ × [0, T )L and r > 0 let N n(Br(ξ, t)) denote the
radius-n neighborhood ofBr(ξ, t) with respect to dΓ. Then for any n > 0,

lim sup
δ→0+

lim sup
r→∞

|N n(Br(ξ, t))|
|Br+δ(ξ, t)|

≤ 1.

Similarly,

lim sup
δ→0+

lim sup
r→∞

|N n(Sr,a(ξ, t))|
|Br+δ(ξ, t)| − |Br−a−δ(ξ, t)|

≤ 1.
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P 5.2. – For any ε0, r > 0 and a.e. (ξ, t) ∈ ∂Γ × [0, T )L there exists
0 ≤ ε(ξ, t, r) < ε0 such that

1 = lim
δ→0+

lim sup
r→∞

|Br+ε(ξ,t,r)+δ(ξ, t)|
|Br+ε(ξ,t,r)(ξ, t)|

= lim
δ→0−

lim inf
r→∞

|Br+ε(ξ,t,r)+δ(ξ, t)|
|Br+ε(ξ,t,r)(ξ, t)|

.

L 5.3. – There exists a countable set Φ ⊂ [E] such that Φ generates E and for every
φ ∈ Φ there exists an n = n(φ) > 0 such that dΓ((ξ, t), φ(ξ, t)) ≤ n for a.e. (ξ, t).

Proof. – For n > 0 let Gn = {((ξ, t), (ξ′, t′)) ∈ E : dΓ((ξ, t), (ξ′, t′)) ≤ n}. Because d
is locally finite, (∂Γ × [0, T )L, Gn) is a bounded degree graph. By [38], this implies that the
Borel edge-chromatic number of (∂Γ× [0, T )L, Gn) is finite. That is, there exists a Borel map
Ωn : Gn → An (where An is a finite set) such that if ((ξ, t), (ξ′, t′)), ((ξ′, t′), (ξ′′, t′′)) ∈ Gn
and (ξ, t) 6= (ξ′′, t′′) then Ωn((ξ, t), (ξ′, t′)) 6= Ωn((ξ′, t′), (ξ′′, t′′)). We can also assume
without loss of generality that Ωn((ξ, t), (ξ′, t′)) = Ωn((ξ′, t′), (ξ, t)).

For each element a ∈ An, define φa : ∂Γ × [0, T )L → ∂Γ × [0, T )L as follows.
If (ξ, t) ∈ ∂Γ × [0, T )L and there is a (ξ′, t′) such that Ωn((ξ, t), (ξ′, t′)) = a then let
φa(ξ, t) := (ξ′, t′). Otherwise let φa(ξ, t) := (ξ, t). Then φa ∈ [E]. Moreover, if
((ξ, t), (ξ′, t′)) ∈ Gn then there is some a ∈ An such that φa(ξ, t) = (ξ′, t′). Since⋃∞
n=1Gn = E, we have that Φ :=

⋃∞
n=1{φa : a ∈ An} is generating.

Proof of Theorem 5.1 given Propositions 5.1, 5.2. – Let Φ be the generating set from the
previous lemma, φ ∈ Φ, n = n(φ) and ε(ξ, t, r) be as in Proposition 5.2. Then for any
(ξ, t) ∈ ∂Γ× [0, T )L,

lim sup
r→∞

|B̃r(ξ, t) M φ(B̃r(ξ, t))|
|B̃r(ξ, t)|

≤ lim sup
r→∞

2
|N n(Br+ε(ξ,t,r)(ξ, t)) \Br+ε(ξ,t,r)(ξ, t)|

|Br+ε(ξ,t,r)(ξ, t)|

= 2

(
lim sup
r→∞

|N n(Br+ε(ξ,t,r)(ξ, t))|
|Br+ε(ξ,t,r)(ξ, t)|

− 1

)

≤ 2

(
lim sup
δ↘0

lim sup
r→∞

|Br+ε(ξ,t,r)+δ(ξ, t)|
|Br+ε(ξ,t,r)(ξ, t)|

− 1

)
= 0.

The last inequality is justified by Proposition 5.1 and the last equality follows from Proposi-
tion 5.2. Because φ ∈ Φ is arbitrary, this proves B̃ is asymptotically invariant.

Recall that S̃r,a(ξ, t) = B̃r(ξ, t) \ B̃r−a(ξ, t). By Lemma 4.2,

lim
r→∞

|S̃r,a(ξ, t) M φ(S̃r,a(ξ, t))|
|S̃r,a(ξ, t)|

≤ lim
r→∞

|B̃r(ξ, t) M φ(B̃r(ξ, t))|+ |B̃r−a(ξ, t) M φ(B̃r−a(ξ, t))|
|B̃r(ξ, t)|

|B̃r(ξ, t)|
|S̃r,a(ξ, t)|

≤ C2 lim
r→∞

|B̃r(ξ, t) M φ(B̃r(ξ, t))|+ |B̃r−a(ξ, t) M φ(B̃r−a(ξ, t))|
|B̃r(ξ, t)|

= 0.

Since φ ∈ Φ is arbitrary, this implies S̃a is asymptotically invariant.
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5.2. The key geometric argument

This section proves Proposition 5.1. We need a few geometric lemmas to begin.

L 5.4. – Suppose ξ1, ξ2 ∈ ∂Γ and ξ1 6= ξ2. Then for any r ∈ R there are setsV1 ⊂ ∂Γ,
V2 ⊂ Γ (= Γ ∪ ∂Γ) such that

– ξ1 ∈ V1, ξ2 ∈ V2,
– V1 is open in ∂Γ, V2 is open in Γ,
– V1 ∩ V2 = ∅,
– ∀v2 ∈ V2 ∩ Γ, ∀η ∈ V1, hη(v2) ≥ r.

Proof. – Let V1 be an open neighborhood of ξ1 whose closure does not contain ξ2.
Let {Wn}∞n=1 be any sequence of decreasing open subsets of Γ such that ∩nWn = {ξ2} and
Wn ∩ V1 = ∅. If the lemma is false then for each n we can find an xn ∈Wn and an ξn ∈ V1

such that hξn
(xn) < r. Observe

lim
n→∞

2(ξn|xn)e = lim
n→∞

d(xn, e)− hξn
(xn) = +∞.

So if (ξ∞, x∞) is a limit point of {(ξn, xn)}∞n=1 in Γ × Γ then by equation (3.1),
(ξ∞|x∞)e = +∞. In particular, every limit point of {xn}∞n=1 is contained in the closure
of V1. But the hypotheses on Wn imply limn→∞ xn = ξ2, a contradiction.

L 5.5. – Suppose that {ξi}∞i=1 ⊂ ∂Γ and limi→∞ ξi = ξ∞. Fix C ∈ R and
let Hi := {x ∈ Γ : hξi(x) ≤ C} (for 1 ≤ i ≤ ∞). If xi ∈ Hi for all i then every limit
point y of {xi}∞i=1 in Γ satisfies y ∈ H∞ ∪ {ξ∞}.

Proof. – Without loss of generality we may assume {xi}∞i=1 converges in Γ to an ele-
ment y. If y ∈ Γ then xi = y for all i sufficiently large (since Γ is locally finite). So
hξ∞(y) = limi→∞ hξi

(xi) ≤ C and y ∈ H∞.
To obtain a contradiction, suppose that y ∈ ∂Γ but y 6= ξ∞. The previous lemma implies

the existence of sets V∞ ⊂ ∂Γ, Vy ⊂ Γ such that

– ξ∞ ∈ V∞, y ∈ Vy,
– V∞ is open in ∂Γ, Vy is open in Γ,
– V∞ ∩ Vy = ∅,
– ∀g ∈ Vy ∩ Γ, ∀η ∈ V∞, hη(g) ≥ C + 1.

For all n sufficiently large, ξn ∈ V∞. Therefore Hn has trivial intersection with Vy. Since
xn ∈ Hn, this implies limn→∞ xn /∈ Vy. But limn→∞ xn = y ∈ Vy. This contradiction
implies that if limn→∞ xn ∈ ∂Γ then limn→∞ xn = ξ∞ as required.

L 5.6. – There exists a function β = β(r, n, t) ≥ 0 such that if g, g′ ∈ Γ, ξ ∈ ∂Γ and

d(g, e) ≥ r, d(g, g′) ≤ n, |hξ(g)| ≤ t

then
|(d(g, e)− hξ(g))− (d(g′, e)− hξ(g′))| ≤ β(r, n, t).

Moreover, limr→∞ β(r, n, t) = 0 for any n, t > 0.

Proof. – The proof is by contradiction. Assuming no such function exists, there are
constants n, t, ε0 > 0, elements ξr ∈ ∂Γ and elements gr, g′r ∈ Γ (∀r > 0) such that
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– d(gr, e) ≥ r, d(gr, g
′
r) ≤ n, |hξr

(gr)| ≤ t,
– |(d(gr, e)− hξr

(gr))− (d(g′r, e)− hξr
(g′r))| ≥ ε0.

After passing to a subsequence if necessary, we may assume that the sequence {g−1
r ξr}∞r=1

converges to an element ξ∗ ∈ ∂Γ. We claim {g−1
r }∞r=1 also converges to ξ∗. To see this,

observe that for any x, g ∈ Γ and ξ ∈ ∂Γ,

hgξ(x) = hξ(g
−1x)− hξ(g−1).

Therefore,
hg−1

r ξr
(g−1
r ) = hξr (e)− hξr (gr) ≤ t ∀r.

Since limr→∞ d(g−1
r , e) = +∞ the previous lemma implies limr→∞ g−1

r = ξ∗ as claimed.

The claim implies that for any x ∈ Γ,

hξ∗(x) = lim
r→∞

d(g−1
r , x)− d(g−1

r , e) = lim
r→∞

d(e, grx)− d(e, gr).

Since d(gr, g
′
r) ≤ n for all r and because (Γ, d) is locally finite we may assume after passing

to a subsequence that there is a y ∈ Γ such that g−1
r g′r = y for all r. By setting x = y in the

equation above, we obtain:

lim
r→∞

d(e, g′r)− d(e, gr) = hξ∗(y) = lim
r→∞

hg−1
r ξr

(y)

= lim
r→∞

hξr
(gry)− hξr

(gr) = lim
r→∞

hξr
(g′r)− hξr

(gr).

This contradicts the assumption |(d(gr, e)− hξr
(gr))− (d(g′r, e)− hξr

(g′r))| ≥ ε0.

C 5.7. – There is a constant K > 0 (depending only on T, (Γ, d), ν) such that
for any r, n > 0 and any (ξ, t) ∈ ∂Γ× [0, T )L,

N n(Br(ξ, t)) ⊂ Br+β(r−K,n,K)(ξ, t).

Proof. – If (ξ′′, t′′) ∈ N n(Br(ξ, t))\Br(ξ, t) then there exist (ξ′, t′) ∈ Br(ξ, t) and g ∈ Γ

such that d(e, g) ≤ n and g(ξ′, t′) = (ξ′′, t′′). Since (ξ′, t′) ∈ Br(ξ, t), there is also a γ ∈ Γ

such that
γ−1(ξ, t) = (ξ′, t′), d(γ, e)− hξ(γ)− t ≤ r.

Because t′ = t − Rλ(γ−1, ξ) and, by (3.4), |Rλ(γ−1, ξ) + vλhξ(γ)| < C (for some constant
C > 0), we have

|hξ(γ)| ≤ v−1
λ (T + C)⇒ d(γ, e) ≤ r + T + v−1

λ (T + C).

Let f = γg−1. So d(f, γ) = d(g, e) ≤ n. Note f−1(ξ, t) = gγ−1(ξ, t) = g(ξ′, t′) = (ξ′′, t′′).
As above, this implies |hξ(f)| ≤ v−1

λ (T + C). Since (ξ′′, t′′) /∈ Br(ξ, t),
d(e, f) > r − T − v−1

λ (T + C).

We now apply the previous lemma to f and γ to obtain

|d(e, f)− d(e, γ)− hξ(f) + hξ(γ)| ≤ β(r −K,n,K)

where K = T + v−1
λ (T + C). Thus

|d(e, f)− h(f)− t| ≤ |d(e, γ)− hξ(γ)− t|+ β(r −K,n,K) ≤ r + β(r −K,n,K).

This implies (ξ′′, t′′) ∈ Br+β(r−K,n,K)(ξ, t) as required.
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Proposition 5.1 follows from the corollary above and the fact that
limr→∞ β(r, n, t) = 0 ∀n, t.

5.3. Proof of asymptotic invariance

In this section we prove Proposition 5.2 whose statement is recalled below.

P 5.2. – For any ε0, r > 0 and a.e. (ξ, t) ∈ ∂Γ × [0, T )L there exists
0 ≤ ε(ξ, t, r) < ε0 such that

1 = lim
δ→0+

lim sup
r→∞

|Br+ε(ξ,t,r)+δ(ξ, t)|
|Br+ε(ξ,t,r)(ξ, t)|

= lim
δ→0−

lim inf
r→∞

|Br+ε(ξ,t,r)+δ(ξ, t)|
|Br+ε(ξ,t,r)(ξ, t)|

.

Proof. – Let (ξ, t) ∈ ∂Γ × [0, T )L, 0 < a < b, l = b − a and 1 ≤ N,m be integers such
that N is divisible by 4. Suppose that for every c ∈ [a+ 2l/N, b− 2l/N ],

|Bc−2l/N (ξ, t)|
|Bc+2l/N (ξ, t)|

≤ 1− 1/m.

By Lemma 4.2,

Cevb/2 ≥ |Bb(ξ, t)| = |Ba(ξ, t)|
(N/4−1)∏
j=0

|Ba+(4j+4)l/N (ξ, t)|
|Ba+4jl/N (ξ, t)|

≥ |Ba(ξ, t)|(1− 1/m)−N/4 ≥ C−1eva/2(1− 1/m)−N/4+3.

So N ≤ −4 log(C2evl/2)−12 log(1−1/m)
log(1−1/m) .

Suppose now that N > −4 log(C2evl/2)−12 log(1−1/m)
log(1−1/m) .

Then there exists c ∈ [a+ 2l/N, b− 2l/N ] such that

|Bc−2l/N (ξ, t)|
|Bc+2l/N (ξ, t)|

≥ 1− 1/m.

For any x ∈ [c− l/N, c+ l/N ],

|Bx(ξ, t)|
|Bx+l/N (ξ, t)|

≥
|Bc−2l/N (ξ, t)|
|Bc+2l/N (ξ, t)|

≥ 1− 1/m

and
|Bx−l/N (ξ, t)|
|Bx(ξ, t)|

≥
|Bc−2l/N (ξ, t)|
|Bc+2l/N (ξ, t)|

≥ 1− 1/m.

Now let ε0 > 0. By induction, for every r > 0 and j ≥ 2 there exist cr,j , Nj > 0 such that:

– for every x ∈ [cr,j − 1/Nj , cr,j + 1/Nj ]

|Bx(ξ, t)|
|Bx+1/Nj

(ξ, t)|
≥ 1− 1/j, and

|Bx−1/Nj
(ξ, t)|

|Bx(ξ, t)|
≥ 1− 1/j;

– [cr,j+1 − 1/Nj+1, cr,j+1 + 1/Nj+1] ⊂ [cr,j − 1/Nj , cr,j + 1/Nj ] ⊂ [r, r + ε0].

Let δr,ξ,t be the only point in the nested intersection
⋂
j [cr,j − 1/Nj , cr,j + 1/Nj ]. Then

ε(r, ξ, t) := δr,ξ,t − r satisfies the conclusion of the proposition by construction.
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5.4. Proof of Theorem 1.3

In order to apply Theorems 2.2 and 2.3, we need to know the action Γ y (∂Γ, ν) is weakly
mixing, as well as its type and stable type. To prove this, we need the existence of a conformal
measure on ∂Γ:

L 5.8. – Let (Γ, d) be a non-elementary, uniformly quasi-geodesic, hyperbolic group
whose horofunction boundary coincides with its Gromov boundary. Then there exists a conformal
measure νc on ∂Γ. Thus dνc◦g

dνc
(ξ) = exp(−vhξ(g−1)) for a.e. ξ and every g ∈ Γ.

Proof. – For s > 0 and γ ∈ Γ, let

Zs(γ) :=
∑
g∈Γ

e−sd(γ,g).

By Lemma 3.3, there exist constants C0, a > 0 so that if

Nk = |{g ∈ Γ : ak ≤ d(e, g) < a(k + 1)}|

then

C−1
0 evak ≤ Nk ≤ C0e

vak.

So there is a constant C1 > 0 such that

C−1
1

∞∑
k=0

Nke
−ska ≤ Zs(γ) ≤ C1

∞∑
k=0

Nke
−ska.

So if s > v,
C−1

0 C−1
1

1− ea(v−s) ≤ Zs(γ) ≤ C0C1

1− ea(v−s) .

For s > v let

ms :=
1

Z(s)

∑
g∈Γ

e−sd(e,g)δg

where δg is the Dirac measure concentrated on {g} ⊂ Γ. We consider these as measures
on Γ = Γ∪∂Γ. Let νc be any weak* limit ofms as s↘ v. Because lims↘v Z(s) = +∞, νc is
supported on ∂Γ. An exercise left to the reader shows that νc is conformal as claimed.

R 5.9. – If λ ∈ (0, 1) then we do not know whether there exists a conformal

measure νc on ∂Γ which in addition satisfies logλ

(
dνc◦g
dνc

(ξ)
)
∈ Z for every g ∈ Γ and a.e.

ξ ∈ ∂Γ. However, Lemma 3.6 implies that νc is equivalent to a quasi-conformal measure ν
which satisfies this condition.

L 5.10. – Let (Γ, d) be a non-elementary uniformly quasi-geodesic hyperbolic group
whose Gromov boundary coincides with its horofunction boundary and ν be a quasi-conformal
measure on ∂Γ. Then Γ y (∂Γ, ν) is weakly mixing, type IIIλ and stable type IIIτ for
some λ, τ ∈ (0, 1].
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Proof. – By Lemma 3.3 any two quasi-conformal measures on ∂Γ are absolutely continu-
ous to each other. So by Lemma 5.8 we may assume ν is conformal. So the Radon-Nikodym
derivatives dν◦g

dν are continuous. By [27, Corollary 0.2], Γ y (∂Γ, ν) is a factor of a Poisson
boundary. By [1], the action of Γ on any of its Poisson boundaries is weakly mixing. This
implies Γ y (∂Γ, ν) is weakly mixing. The main theorem of [13] implies Γ y (∂Γ, ν) is
type IIIλ and stable type IIIτ for some λ, τ ∈ (0, 1].

We now combine Theorems 2.2, 2.3, Corollary 4.5 and Theorem 5.1 to prove Theorem 1.3.

Proof of Theorem 1.3. – Let a, T ≥ 0 be sufficiently large so that the conclusions to
Corollary 4.5 and Theorem 5.1 hold. Also let ε0 > 0.

We use notation as in §3.3. So letE be the equivalence relation on ∂Γ× [0, T )L induced by
the partial action of Γ. Let ε(ξ, t, r), S̃a = {S̃r,a}r>0 be as in Theorem 5.1. By Corollary 4.5
and Theorem 5.1, S̃a is regular and asymptotically invariant.

Suppose that Γ y (∂Γ, ν) has type III1 (so L = R, λ = 1). Let

ζr(g) = T−1

∫ T

0

∫
|{w ∈ Γ : w(ξ, t) ∈ S̃r,a(ξ, t)}|−11

S̃r,a(ξ,t)(g
−1(ξ, t)) dν(ξ)dt.

The previous lemma and Theorem 2.2 imply {ζr} is a pointwise ergodic family in L logL. So
it suffices to show that each ζr is supported on B(e, r + ρ) \B(e, r − ρ) where

ρ := ε0 + T + v−1
λ (C + T ) + a

is a constant independent of r.

We observe that ζr is supported on those g ∈ Γ satisfying: there exists (ξ, t) ∈ ∂Γ× [0, T )L
such that

g−1(ξ, t) ∈ S̃r,a(ξ, t) = Br+ε(ξ,t,r)(ξ, t) \Br−a+ε(ξ,t,r−a)(ξ, t).

Thus ζr is supported on

Γr+ε(ξ,t,r)(ξ, t) \ Γr−a+ε(ξ,t,r−a)(ξ, t) ⊂ Γr+ε0(ξ, t) \ Γr−a(ξ, t).

So let g ∈ Γr+ε0(ξ, t) \ Γr−a(ξ, t). Then g−1(ξ, t) ∈ ∂Γ× [0, T )L. By definition (see §3.3)

g−1(ξ, t) = (g−1ξ, t−Rλ(g−1, ξ)).

So |Rλ(g−1, ξ)| ≤ T . By (3.4), |Rλ(g−1, ξ) + vλhξ(g)| ≤ C where C > 0 is a constant. Thus
|hξ(g)| ≤ v−1

λ (C + T ). Since g ∈ Γr+ε0(ξ, t) \ Γr−a(ξ, t),

r−a−v−1
λ (C+T ) ≤ r−a+hξ(g) < d(e, g) ≤ r+ε0 + t+hξ(g) ≤ r+ε0 +T +v−1

λ (C+T ).

Thus g ∈ B(e, r + ρ) \B(e, r − ρ) as required.

This finishes the type III1 case. The type IIIλ case (λ ∈ (0, 1)) is similar, using Theo-
rem 2.3 instead of 2.2.
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