Nous commençons par présenter une théorie des déformations de distributions intégrables de codimension 1. Cette théorie est utilisée pour étudier les déformations d'hypersurfaces Levi plates: une déformation Levi plate d'une hypersurface Levi plate
Nous disons que
We first give a deformation theory of integrable distributions of codimension 1. This theory is used to study Levi-flat deformations: a Levi-flat deformation of a Levi flat hypersurface
Keywords: Levi flat hypersurface, transversally parallelizable foliation, differentiable graded linear algebra, infinitesimal rigidity.
Mot clés : Hypersurface de Levi plate, feuilletage transversalement parallélisable, algèbre de Lie différentielle graduée, rigidité infinitésimale.
@article{ASENS_2015__48_2_281_0, author = {de Bartolomeis, Paolo and Iordan, Andrei}, title = {Deformations of {Levi} flat hypersurfaces in complex manifolds}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {281--311}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {2}, year = {2015}, doi = {10.24033/asens.2245}, mrnumber = {3346172}, zbl = {1319.32011}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2245/} }
TY - JOUR AU - de Bartolomeis, Paolo AU - Iordan, Andrei TI - Deformations of Levi flat hypersurfaces in complex manifolds JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 281 EP - 311 VL - 48 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - https://www.numdam.org/articles/10.24033/asens.2245/ DO - 10.24033/asens.2245 LA - en ID - ASENS_2015__48_2_281_0 ER -
%0 Journal Article %A de Bartolomeis, Paolo %A Iordan, Andrei %T Deformations of Levi flat hypersurfaces in complex manifolds %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 281-311 %V 48 %N 2 %I Société Mathématique de France. Tous droits réservés %U https://www.numdam.org/articles/10.24033/asens.2245/ %R 10.24033/asens.2245 %G en %F ASENS_2015__48_2_281_0
de Bartolomeis, Paolo; Iordan, Andrei. Deformations of Levi flat hypersurfaces in complex manifolds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 2, pp. 281-311. doi : 10.24033/asens.2245. https://www.numdam.org/articles/10.24033/asens.2245/
(2010) (personal communication)
Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, Ann. Mat. Pura Appl., Volume 11 (1932), pp. 17-90 | DOI | JFM | MR | Zbl
Minimaux Des Feuilletages Algébriques de
On the Displacement Rigidity of Levi Flat Hypersurfaces - The Case of Boundaries of Disc Bundle over Compact Riemann Surfaces, Publ. RIMS, Volume 43 (2007), pp. 171-180 | DOI | MR | Zbl
Singular Levi-Flat Real Analytic Hypersurfaces, Amer. J. Math., Volume 121 (1999), pp. 23-53 | DOI | MR | Zbl
On Deformation on Rings and Algebras, Ann. of Math., Volume 79 (1964), pp. 59-103 | DOI | MR | Zbl
The Deformation Theory of Representations of Fundamental Groups of Compact Kähler Manifolds, Publ. Math. IHÉS, Volume 67 (1988), pp. 43-96 | DOI | Numdam | MR | Zbl
, Birkhäuser, 1991
Some Global Properties of Contact Structures, Ann. of Math., Volume 69 (1959), pp. 421-450 | DOI | MR | Zbl
Régularité de L'opérateur
(Springer-Verlag, ed.), Springer, 2005
On Deformations of Complex Analytic Structures I and II, Ann. of Math., Volume 67 (1958), pp. 328-466 | DOI | MR | Zbl
Multifoliate Structures, Ann. of Math., Volume 74 (1961), pp. 52-100 | DOI | MR | Zbl
A Note on Projective Levi Flats and Minimal Sets of Algebraic Foliation, Ann. Inst. Fourier, Volume 49 (1999), pp. 1369-1385 | DOI | Numdam | MR | Zbl
On the Real Analytic Levi Flat Hypersurfaces in Complex Tori of Dimension Two, Ann. Inst. Fourier, Volume 52 (2002), pp. 1525-1532 | DOI | Numdam | MR | Zbl
Cohomology and Deformations in Graded Lie Algebra, Bull. A. M. S., Volume 72 (1966), pp. 1-29 | DOI | MR | Zbl
Nonexistence of Smooth Levi Flat Hypersurfaces In Complex Projective Spaces of Dimension
Cycles for Dynamical Study of Foliated Manifolds and Complex Manifolds, Invent. Math., Volume 36 (1976), pp. 225-255 | DOI | MR | Zbl
, Soc. Math. France, 2002
Cité par Sources :