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DEFORMATIONS OF LEVI FLAT HYPERSURFACES
IN COMPLEX MANIFOLDS

 P DE BARTOLOMEIS  A IORDAN

A. – We first give a deformation theory of integrable distributions of codimension 1. This
theory is used to study Levi-flat deformations: a Levi-flat deformation of a Levi flat hypersurface L in a
complex manifold is a smooth mapping Ψ : I×M →M such that Ψt = Ψ (t, ·) ∈ Diff (M), Lt = ΨtL

is a Levi flat hypersurface in M for every t ∈ I and L0 = L. We define a parametrization of families
of smooth hypersurfaces near L such that the Levi flat deformations are given by the solutions of the
Maurer-Cartan equation in a DGLA associated to the Levi foliation. We say that L is infinitesimally
rigid if the tangent cone at the origin to the moduli space of Levi flat deformations of L is trivial.
We prove the infinitesimal rigidity of compact transversally parallelizable Levi flat hypersurfaces in
compact complex manifolds and give sufficient conditions for infinitesimal rigidity in Kähler manifolds.
As an application, we prove the nonexistence of transversally parallelizable Levi flat hypersurfaces in
a class of manifolds which contains CP2.

R. – Nous commençons par présenter une théorie des déformations de distributions inté-
grables de codimension 1. Cette théorie est utilisée pour étudier les déformations d’hypersurfaces Levi
plates: une déformation Levi plate d’une hypersurface Levi plate L dans une variété complexe M est
une application lisse Ψ : I × M → M telle que Ψt = Ψ (t, ·) ∈ Diff (M), Lt = ΨtL est une hy-
persurface Levi plate dans M pour tout t ∈ I et L0 = L. Nous définissons une paramétrisation des
hypersurfaces Levi plates au voisinage de L telle que les déformations d’hypersurfaces Levi plates de L

sont données par les solutions de l’équation de Maurer-Cartan dans une DGLA associée au feuilletage
de Levi.

Nous disons que L est infinitésimalement rigide si le cône tangent à l’origine de l’espace de modules
des déformations Levi plates de L est trivial. Nous prouvons que les hypersurfaces de Levi plates com-
pactes transversalement parallélisables dans les variétés complexes compactes sont infinitésimalement
rigides et nous donnons des conditions suffisantes pour la rigidité infinitésimale dans les variétés de
Kähler. Comme application, nous démontrons la non existence d’hypersurfaces Levi plates transver-
salement parallélisables dans une classe de variétés qui contient l’espace projectif complexe de dimen-
sion n > 2.

The first author was supported by the M.I.U.R. project “Geometric Properties of Real and Complex Manifolds”
and by G.N.S.A.G.A. of INdAM.
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282 P. DE BARTOLOMEIS AND A. JORDAN

1. Introduction

Let M be a complex manifold and L a real hypersurface of class C2 in M such that
M\L = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅. L is Levi flat if it satisfies one of the following equivalent
conditions:

1) Ω1 and Ω2 are pseudoconvex domains.
2) L is foliated by complex hypersurfaces of M .
3) The Levi form of L vanishes.

It is well known that in general, if L is not of class C2, we have only 3) =⇒ 2) =⇒ 1).
One of the oldest result concerning Levi flat hypersurfaces is a theorem of E. Cartan [3]

which states that a real analytic Levi flat hypersurface is locally isomorphic to the set of
vanishing of the real part of a holomorphic function. A generalization of this theorem for
singular Levi flat hypersurfaces can be found in [9].

Recent research on Levi flat hypersurfaces in complex manifolds were motivated by the
following conjecture of D. Cerveau [4]: there are no smooth Levi flat hypersurfaces in the
complex projective space CPn, n > 2.

Forn > 3, this conjecture was proved by Lins Neto for real analytic Levi flat hypersurfaces
[15], by Y.-T. Siu for Levi flat hypersurfaces of classC12 [18] and by A. Iordan and F. Matthey
for Lipschitz hypersurfaces of Sobolev class W s, s > 5/2 [11]. Despite several attempts to
prove this conjecture for n = 2, its proof is still incomplete.

Unlike CPn, n > 2, the complex tori Tn = Cn/Γ contains the Levi flat hypersurfaces
π
(
⊕2n−1
j=1 Ruj + u

)
where π : Cn → Tn is the canonical projection, uj , j = 1, . . . , 2n − 1,

are R-linearly independent vectors in Γ and u ∈ Cn [16]. It was conjectured in [16] that for
every compact Levi flat hypersurface M in Tn, π−1 (M) is a union of affine hyperplanes.

In this paper we study the deformations of smooth Levi flat hypersurfaces in complex
manifolds. The theory of deformations of complex manifolds was intensively studied from
the 50s beginning with the famous results of Kodaira and Spencer [13] (see for ex. [12], [21]).
In [17], Nijenhuis ans Richardson adapted a theory initiated by Gerstenhaber [6] and proved
the connection between the deformations of complex analytic structures and the theory
of differential graded Lie algebras (DGLA). This theory was developed following ideas of
Deligne by Goldman and Millson [8].

The main results of this paper may be summarized as follows.
In the first chapter we consider integrable distributions of codimension 1 on smooth

manifolds and we define a DGLA associated to the foliation such that the deformations of
integrable distributions of codimension 1 are given by solutions of Maurer-Cartan equation
in this algebra. As the examples show, this theory is highly non trivial and it seems to be
interesting by itself. We mention that Kodaira and Spencer developed in [14] a theory of
deformations of the so called multifoliate structures, which are more general than the foliate
structures. Our approach in this paper for foliations of codimension 1 is different of theirs
(see Remark 14) and allows us to study the Levi flat case.

In the second chapter we give a description of the deformations of a smooth Levi flat
hypersurface L in a complex manifold by means of the Maurer-Cartan equation in the
DGLA associated to the Levi foliation.
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DEFORMATIONS OF LEVI FLATS 283

Then we establish the equations verified by the tangent to a regular familly of Levi flat de-
formations. We say thatL is infinitesimally rigid (respectively strongly infinitesimally rigid) if
the tangent cone at the origin to the moduli space of Levi flat deformations of L is trivial (re-
spectively if the tangent cone at the origin to the solutions of the Maurer-Cartan equation in
the DGLA associated to the Levi foliation is trivial) . We remark that Diederich and Ohsawa
study in [5] the displacement rigidity of Levi flat hypersurfaces in disc bundle over compact
Riemann surfaces. The definition of rigidity in [5] means that any small C2 perturbation of
a Levi flat hypersurface L is CR isomorphic with L, so L is strongly infinitesimally rigid.

We prove that a transversally parallelizable compact Levi flat hypersurface in a compact
complex manifold is strongly infinitesimally rigid and we give a sufficient condition for
infinitesimal rigidity in Kähler manifolds (Theorem 3). As an application, we prove that there
are no compact transversally parallelizable Levi flat hypersurfaces in connected complex
manifolds M such that for every p 6= q ∈ M and every real hyperplane Hq in TqM there
exists a holomorphic vector field Y on M such that Y (p) = 0 and Y (q) ⊕ Hq = TqM . If
M = CPn, n ≥ 2, the hypotheses of the previous result are fulfilled.

The non existence of transversally parallelizable Levi flat hypersurfaces in CP2 can be
obtained by different proofs. We chose here to give a proof by using the results of this paper.
Another direct proof was furnished to the authors by Marco Brunella [2] who disappeared
recently in a tragic accident. We want to pay tribute to the memory of Marco Brunella by
giving also his proof of this result.

2. Deformation theory of integrable distribution of codimension 1

2.1. DGLA associated to an integrable distribution of codimension 1

D 1. – A differential graded Lie algebra (DGLA) is a triple (V ∗, d, [·, ·]) such
that:

1) V ∗ = ⊕i∈NV i, where
(
V i
)
i∈N is a family of C-vector spaces and d : V ∗ → V ∗ is a

graded homomorphism such that d2 = 0. An element a ∈ V k is said to be homogeneous of
degree k = deg a.

2) [·, ·] : V ∗ × V ∗ → V ∗ defines a structure of graded Lie algebra i.e., for homogeneous
elements we have

(2.1) [a, b] = − (−1)
deg a deg b

[b, a]

and

(2.2) [a, [b, c]] = [[a, b] , c] + (−1)
deg a deg b

[b, [a, c]] .

3) d is compatible with the graded Lie algebra structure i.e.,

(2.3) d [a, b] = [da, b] + (−1)
deg a

[a, db] .

R 1. – If (2.1) is satisfied then (2.2) is equivalent to

(2.4) Ss (−1)
deg a deg c

[a, [b, c]] = 0

where Ss denotes the symmetric sum.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



284 P. DE BARTOLOMEIS AND A. JORDAN

D 2. – Let (V ∗, d, [·, ·]) be a DGLA and a ∈ V 1. We say that a verifies the
Maurer-Cartan equation in (V ∗, d, [·, ·]) if

(2.5) da+
1

2
[a, a] = 0.

L 1. – Let (V ∗, d, [·, ·]) be a DGLA and a ∈ V 1. Set da = d+ [a, ·]. Then for every
ω ∈ V ∗ we have

d2
aω =

[
da+

1

2
[a, a] , ω

]
.

Proof. – Let ω ∈ V k. Since d satisfies (2.3) we have

d2
aω = (d+ [a, ·]) (dω + [a, ω]) = d [a, ω] + [a, dω] + [a, [a, ω]]

= [da, ω]− [a, dω] + [a, dω] + [a, [a, ω]]

= [da, ω] + [a, [a, ω]] .

But (2.2) gives

[a, [a, ω]] =
1

2
[[a, a] , ω]

and the lemma follows.

From Lemma 1 we obtain the following

C 1. – Let (V ∗, d, [·, ·]) be a DGLA and a ∈ V 1 verifying the Maurer-
Cartan equation (2.5). Then d2

a = 0. Moreover, if Z (V ∗) = {0}, where Z (V ∗) =

{β ∈ V ∗ : [β, α] = 0, ∀α ∈ V ∗} is the center of (V ∗, d, [·, ·]), then a verifies Maurer-Cartan
equation (2.5) if and only if d2

a = 0 .

The starting point of the theory developed in this section is the following:

L 2. – LetL be aC∞ manifold and letX be a vector field onL. We denote by Λk (L)

the k-forms on L and Λ∗ (L) = ⊕k∈NΛk (L). For α, β ∈ Λ∗ (L), set

(2.6) {α, β} = LXα ∧ β − α ∧ LXβ

where LX is the Lie derivative. Then (Λ∗ (L) , d, {·, ·}) is a DGLA.

Proof. – Since (2.1) is obvious we will verify (2.4). We have

Ss (−1)
deg a deg c {a, {b, c}} = Ss (−1)

deg a deg c
( LXa ∧ LXb ∧ c

− LXa ∧ b ∧ LXc− a ∧ L2
Xb ∧ c+ a ∧ b ∧ L2

Xc).

Since
(−1)

deg c deg a LXa ∧ LXb ∧ c = (−1)
deg a deg b LXb ∧ c ∧ LXa

and
(−1)

deg a deg c
a ∧ L2

Xb ∧ c = (−1)
deg b deg c

c ∧ a ∧ L2
Xb,

it follows that
Ss (−1)

deg a deg c {a, {b, c}} = 0.

By using Cartan’s formula
LX = ιXd+ dιX
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we obtain

d {a, b} = d ((ιXd+ dιX) a ∧ b− a ∧ (ιXd+ dιX) b)

= dιXda ∧ b+ (−1)
deg a

ιXda ∧ db+ (−1)
deg a

dιXa ∧ db

− da ∧ ιXdb− da ∧ dιXb− (−1)
deg a

a ∧ dιXdb

= {da, b}+ (−1)
deg a {a, db} .

L 3. – Let L be a C∞ manifold and ξ ⊂ T (L) a distribution of codimension 1. Let
γ ∈ ∧1 (L) such that ker γ = ξ and let X be a vector field on L such that γ (X) = 1. Then the
following are equivalent:

i) ξ is integrable;

ii) There exists α ∈ ∧1 (L) such that dγ = α ∧ γ;

iii) dγ ∧ γ = 0;

iv) dγ = −ιXdγ ∧ γ;

v) γ satisfies the Maurer-Cartan equation (2.5) in (Λ∗ (L) , d, {·, ·}), where {·, ·} is defined
in (2.6).

Proof. – ii)⇒ iii) and iv)⇒ ii) are evident.

iii)⇒ iv). Suppose

dγ ∧ γ = 0.

Since

ιX (a ∧ b) = ιXa ∧ b+ (−1)
deg(a)

a ∧ ιXb, a, b ∈ Λ∗ (L) ,

we have

0 = ιX (dγ ∧ γ) = ιX (dγ) ∧ γ + (ιXγ) dγ = ιX (dγ) ∧ γ + dγ,

and so

dγ = −ιX (dγ) ∧ γ.

iv)⇔ v). Since ιXγ = 1 we have

{γ, γ} = LXγ ∧ γ − γ ∧ LXγ = ιXdγ ∧ γ − γ ∧ ιXdγ = 2ιXdγ ∧ γ

so

dγ +
1

2
{γ, γ} = dγ + ιXdγ ∧ γ.

As i)⇔ ii) is the theorem of Frobenius, the lemma is proved.

By Lemma 2, Lemma 3 and Corollary 1 we obtain

C 2. – Let L be a C∞ manifold and ξ ⊂ T (L) an integrable distribution of
codimension 1. Let γ ∈ ∧1 (L) such that ker γ = ξ and let X be a vector field on L such that
γ (X) = 1. Set

δ = dγ = d+ {γ, ·}
where {·, ·} is defined in (2.6). Then (Λ∗ (L) , δ, {·, ·}) is a DGLA.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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R 2. – Let Z (Λ∗ (L)) be the center of (Λ∗ (L) , δ, {·, ·}). Then Z (Λ∗ (L)) = {0}.
Indeed, let α ∈ Z (Λ∗ (L)). Since {α, 1} = LXα it follows that LXα = 0. Let x ∈ L and
choose local coordinates (x1, . . . , xn) in a neighborhood U of x such that X = ∂

∂x1
on U . Let

β ∈ Λ0 (L) such that β = x1 in a neighborhood of x. Then

{α, β} (X) = ( LXα ∧ β − α ∧ LXβ) (X) = −α (X) = 0

and so α = 0.

C 3. – Under the hypothesis of Corollary 2, we set

Z∗ (L) = {α ∈ Λ∗ (L) : ιXα = 0} .

Then ( Z∗ (L) , δ, {·, ·}) is a sub-DGLA of (Λ∗ (L) , δ, {·, ·}).

Proof. – Let α, β ∈ Z∗ (L). Since ιXα = 0, ιXβ = 0 and ι2X = 0 we have

ιXδα = ιX (dα+ ιXdγ ∧ α− γ ∧ ιXdα) = ιXdα− ιXdα = 0

and

ιX {α, β} = ιX ( LXα ∧ β − α ∧ LXβ) = ιX LXα ∧ β − (−1)
degα

α ∧ ιX LXβ

= ιX (ιXd+ dιX)α ∧ β − (−1)
degα

α ∧ ιX (ιXd+ dιX)β = 0.

R 3. – Let L be a C∞ manifold and ξ ⊂ T (L) an integrable distribution of
codimension 1. Then there exists a 1-form γ on L such that ξ = ker γ if and only if ξ is co-
orientable, i.e., the normal space to the foliation defined by ξ is orientable (see for ex. [7]).

D 3. – Let L be a C∞ manifold and ξ ⊂ T (L) an integrable co-orientable
distribution of codimension 1. A couple (γ,X) where γ ∈ ∧1 (L) and X is a vector field on L
such that ker γ = ξ and γ (X) = 1 will be called a DGLA defining couple.

R 4. – Let L be a C∞ manifold and ξ ⊂ T (L) an integrable distribution of
codimension 1. Let (γ,X) be a DGLA defining couple for an integrable distribution ξ of
codimension 1. Then (γ′, X ′) is a DGLA defining couple for ξ if and only if γ′ = eλγ,
λ ∈ C∞ (M) and X ′ = e−λX + V , V ∈ ξ. Compare with the contact distribution case:
the existence of a contact form ω on an odd dimensional manifold is equivalent with the co-
orientability of the contact distribution [10] and it is unique up to a multiplication with a
nonvanishing function. In this case the Reeb vector field R is uniquely defined by ιRω = 1 and
ιRdω = 0. But contact distributions are nonintegrable.

R 5. – Let α, β ∈ Z∗ (L) and let (γ,X) be a DGLA defining couple. Then

(2.7) {α, β} = (ιXd+ dιX)α ∧ β − α ∧ (ιXd+ dιX)β = ιXdα ∧ β − α ∧ ιXdβ

and

(2.8) {γ, α} = (ιXd+ dιX) γ ∧ α− γ ∧ (ιXd+ dιX)α = ιXdγ ∧ α− γ ∧ ιXdα.

D 4. – Let (V ∗, dV , [·, ·]V ), (W ∗, dW , [·, ·]W ) be DGLA and Φ : V ∗ →W ∗ a
graded morphism. We say that Φ is a DGVS-morphism (differential graded vector space mor-
phism) if ΦdV = dWΦ. A DGVS-morphism Φ is a DGLA-morphism if
[Φ (α) ,Φ (β)]W = Φ ([α, β]V ) for every α, β ∈ V ∗.
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R 6. – The DGLA structure of Z∗ (L) depends on the choice of the DGLA defining
couple (γ,X). In what follows, for given ξ we will fix γ andX. When it is necessary to emphasize

this dependence we will write
(

Z∗γ,X (L) , δγ,X , {·, ·}γ,X
)

.

The following proposition will describe shortly the effects of changing the defining couple:

P 1. – Let L be a C∞ manifold and ξ ⊂ T (L) an integrable distribution
of codimension 1. Let (γ,X) be a DGLA defining couple, V a ξ-valued vector field and
λ ∈ C∞ (L). For α ∈ Z∗ (L) consider Ψ (α) = Ψλ (α) = eλα and Θ (α) = ΘV (α) =

α+ (−1)
degα

ιV α ∧ γ. Then:

i) Ψ :
(

Z∗γ,X (L) , δγ,X , {·, ·}γ,X
)
→

(
Z∗eλγ,e−λX (L) , δeλγ,e−λX , {·, ·}eλγ,e−λX

)
is a

DGLA-isomorphism.
ii) Θ :

(
Z∗γ,X (L) , δγ,X

)
→
(
Z∗γ,X+V (L) , δγ,X+V

)
is a DGVS-isomorphism.

Proof. – i) Let α, β ∈ Z∗γ,X (L). By (2.7) and (2.8) we have

(2.9) Ψδγ,Xα = eλ
(
da+ {γ, α}γ,X

)
= eλ (da+ ιXdγ ∧ α− γ ∧ ιXdα)

and {
eλγ, eλα

}
eλγ,e−λX

= ιe−λXd
(
eλγ
)
∧ eλα− eλγ ∧ ιe−λXd

(
eλα

)
= ιX

(
eλdλ ∧ γ + eλdγ

)
∧ α− γ ∧ ιXd

(
eλα

)
= eλ[ιX (dλ) γ ∧ α− dλ ∧ α+ ιX (dγ) ∧ α− γ ∧ ιX (dλ ∧ α)

− ιX (dλ) γ ∧ α− γ ∧ ιXdα]

= eλ [−dλ ∧ α+ ιX (dγ) ∧ α− γ ∧ ιXdα] .(2.10)

By replacing (2.10) in the formula

δeλγ,e−λXΨα = d
(
eλα

)
+
{
γ, eλα

}
eλγ,e−λX

,

we deduce from (2.9) that
Ψδγ,X = δeλγ,e−λXΨ.

We have also

{Ψα,Ψ (β)}eλγ,e−λX =
{
eλα, eλβ

}
eλγ,e−λX

= ιe−λXd
(
eλα

)
∧ eλβ − eλα ∧ ιe−λXd

(
eλβ

)
= eλ [ιX (dλ ∧ α+ dα) ∧ β − α ∧ ιX (dλ ∧ β + dβ)]

= eλ [ιX (dλ)α ∧ β + ιXdα ∧ β − ιX (dλ)α ∧ β − α ∧ ιXdβ]

= eλ [ιXdα ∧ β − α ∧ ιXdβ] = Ψ {α, β}γ,X .

ii) Let α ∈ Z∗γ,X (L). Then

ιX+V Θα = ιX+V

(
α+ (−1)

degα
ιV α ∧ γ

)
= ιV α+ (−1)

degα
ιX (ιV α ∧ γ) + (−1)

degα
ιV (ιV α ∧ γ)

= ιV α+ (−1)
degα

ιXιV α ∧ γ − ιV α = 0.

It follows that Θ is well defined and the map Θ′ : Z∗γ,X+V (L) → Z∗γ,X (L) defined by

Θ′ (α) = α+ (−1)
degα

ι−V α ∧ γ is the inverse of Θ.
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Since ιV γ = 0 and dγ =−ιXdγ∧γ, by using the expression of δγ,X from (2.9), we obtain

Θδγ,Xα = δγ,Xα− (−1)
degα

ιV (dα+ ιXdγ ∧ α− γ ∧ ιXdα) ∧ γ

= δγ,Xα− (−1)
degα

ιV dα ∧ γ − (−1)
degα

(ιV ιXdγ) ∧ α ∧ γ

+ (−1)
degα

ιXdγ ∧ ιV α ∧ γ

= δγ,Xα− γ ∧ ιV dα− (−1)
degα

(ιV ιXdγ) ∧ α ∧ γ + dγ ∧ ιV α.(2.11)

We have{
γ, α+ (−1)

degα
ιV α ∧ γ

}
γ,X+V

= ιX+V dγ ∧
(
α+ (−1)

degα
ιV α ∧ γ

)
− γ ∧ ιX+V d

(
α+ (−1)

degα
ιV α ∧ γ

)
= ιXdγ ∧ α+ (−1)

degα
ιXdγ ∧ ιV α ∧ γ

+ ιV dγ ∧ α+ (−1)
degα

ιV dγ ∧ ιV α ∧ γ

− γ ∧ ιXdα− (−1)
degα

γ ∧ ιXd (ιV α ∧ γ)

− γ ∧ ιV dα− (−1)
degα

γ ∧ ιV d (ιV α ∧ γ)

and

d
(
α+ (−1)

degα
ιV α ∧ γ

)
= dα+ (−1)

degα
dιV α ∧ γ − ιV α ∧ dγ.

So

δγ,X+V Θα = dα+ (−1)
degα

dιV α ∧ γ − ιV α ∧ dγ

+ ιXdγ ∧ α+ (−1)
degα

ιXdγ ∧ ιV α ∧ γ + ιV dγ ∧ α

+ (−1)
degα

ιV dγ ∧ ιV α ∧ γ − γ ∧ ιXdα− (−1)
degα

γ ∧ ιXd (ιV α ∧ γ)

− γ ∧ ιV dα− (−1)
degα

γ ∧ ιV d (ιV α ∧ γ) .(2.12)

Since

γ ∧ ιXd (ιV α ∧ γ) = γ ∧ ιX
(
dιV α ∧ γ + (−1)

degα−1
ιV α ∧ dγ

)
= (−1)

degα
γ ∧ dιV α+ γ ∧ ιV α ∧ ιXdγ

= (−1)
degα

(γ ∧ dιV α− ιV α ∧ dγ)

and

γ ∧ ιV d (ιV α ∧ γ) = γ ∧ ιV
(
dιV α ∧ γ + (−1)

degα−1
ιV α ∧ dγ

)
= γ ∧ ιV α ∧ ιV dγ,

(2.12) gives

δγ,X+V Θα = δγ,Xα+ (−1)
degα

dιV α ∧ γ − ιV α ∧ dγ

+ (−1)
degα

ιXdγ ∧ ιV α ∧ γ + ιV dγ ∧ α
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+ (−1)
degα

ιV dγ ∧ ιV α ∧ γ − γ ∧ dιV α+ ιV α ∧ dγ

− γ ∧ ιV dα− (−1)
degα

γ ∧ ιV α ∧ ιV dγ
= δγ,Xα+ dγ ∧ ιV α+ ιV dγ ∧ α− γ ∧ ιV dα.(2.13)

Finally, from (2.11) and (2.13) it follows that

δγ,X+V Θα−Θδγ,Xα = ιV dγ ∧ α+ (−1)
degα

(ιV ιXdγ)α ∧ γ

= −ιV (ιXdγ ∧ γ) ∧ α+ (−1)
degα

(ιV ιXdγ)α ∧ γ

= −ιV (ιXdγ) γ ∧ α+ (−1)
degα

(ιV ιXdγ)α ∧ γ = 0.

2.2. Moduli space of deformations of integrable distributions of codimension 1

Let L be a C∞ manifold and ξ ⊂ T (L) an integrable co-orientable distribution of
codimension 1. We fix a DGLA defining couple (γ,X) and we consider the DGLA
( Z∗ (L) , δ, {·, ·}) previously defined.

L 4. – Let α ∈ Z1 (L). The following are equivalent:

i) The distribution ξα = ker (γ + α) is integrable.

ii) α satisfies the Maurer-Cartan equation (2.5) in ( Z∗ (L) , δ, {·, ·}).

Proof. – By Lemma 3 the distribution ker (γ + α) is integrable if and only if γ+α satisfies
(2.5) in (Λ∗ (L) , d, {·, ·}). Since γ satisfies (2.5) we have

d (γ + α) +
1

2
{γ + α, γ + α} = dα+ {γ, α}+

1

2
{α, α}

= δα+
1

2
{α, α}

and the lemma follows.

N 1. –

MCδ (L) =

{
α ∈ Z1 (L) : δa+

1

2
{α, α} = 0

}
.

Following [14] we define:

D 5. – By a differentiable family of deformations of an integrable distribution ξ
we mean a differentiable family ω : D = (ξt)t∈I 7→ t ∈ I =] − a, a[, a > 0, of integrable
distributions such that ξ0 = ω−1 (0) = ξ. By a differentiable family of small deformations of
an integrable distribution ξ we mean the restriction D |Iε = ω−1 (Iε) of a differentiable family
of ω : D → Iε =] − ε, ε[ of deformations of ξ = ω−1 (0) to a sufficiently small neighborhood
of 0 in I.

R 7. – By Lemma 4 a differentiable family of deformations of an integrable distri-
bution is given by a differentiable family (γ + αt)t∈I in Z1 (L) such that ξt = ker(γ + αt) and
α0 = 0.
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D 6. – Let U be a neighborhood of the identity in the group G = Diff(L) of
diffeomorphisms of L and V be a neighborhood of 0 in Z1 (L) such that Φ∗ (γ + α) (X) 6= 0,(
Φ−1

)∗
(γ + α) (X) 6= 0 for every (Φ, α) ∈ U × V . We define

(2.14)
(Φ, α) ∈ U× V ⊂ G× Z1 (L)→ Z1 (L) 3 χ (Φ) (α) = (Φ∗ (γ + α) (X))

−1
Φ∗ (γ + α)−γ.

R 8. – The previous definition is adapted for small deformations. If β = χ (Φ) (α),
ξχ(Φ)(α) = Φ∗ξα. This means that ξα is integrable if and only if ξχ(Φ)(α) is integrable.
By Lemma 4 we deduce that α satisfies the Maurer-Cartan equation (2.5) in the DGLA
( Z∗ (L) , δ, {·, ·}) if and only if χ (Φ) (α) does.

R 9. – We consider the right action of G on the set D of distributions of codimen-
sion 1 on L given by

(2.15) τ (Φ) (ξ) = Φ−1
∗ ξ, Φ ∈ G, ξ ∈ D.

Denote by I the subset of D given by the coorientable integrable distributions. Since ξ = kerβ

if and only if τ (Φ) (ξ) = ker Φ∗β it follows that I is G-invariant.

D 7. – i) I / G is the moduli space of integrable distributions of codimension 1

on L.

ii) We consider the one-to-one mapping

(2.16) Z1 (L) 3 α 7→ ζα = ker (γ + α) ∈ R,

where R =
{
ζ ∈ D : ζ = ker (γ + β) , β ∈ Z1 (L)

}
⊂ D. The moduli space of deformations

of integrable distributions of codimension 1 of ξ is π−1 (π ( I ∩ R)) / G, where π : D→ D/ I is
the canonical map.

R 10. – Let ν ∈ π−1 (π ( I ∩ R)) / G, ν = π (ζ), where ζ ∈ I ∩ R. By Lemma 4
there exists α ∈ MCδ (L) such that ζ = ζα = ker (γ + α). Then if Φ ∈ G is sufficiently close
to the identity we have

τ (Φ) (ζα) = Φ−1
∗ ζα = ker Φ∗ (γ + α) = ker (γ + χ (Φ) (α)) = ζχ(Φ)(α),

so ν = π
(
ζχ(Φ)(α)

)
and the action given by (2.14) is the local description of the global action

given by (2.15) via the correspondence (2.16).

N 2. – We will denote the moduli space of deformations of integrable distributions
of codimension 1 of ξ byMCδ (L) /∼ G .

R 11. – Let G0 be the identity component of G, Λ1 (L)
′ the set of nowhere vanishing

1-forms on L and Λ1 (L)
′
/eΛ0(L) the set of cooriented distributions. Then we have the group

action
G0 × Λ1 (L)

′
/eΛ0(L) 3 (Φ, ker γα)→ kerχ (Φ) (α) ∈ Λ1 (L)

′
/eΛ0(L)

of G0 on Λ1 (L)
′
/eΛ0(L) and consider

[
MCδ (L) / G0

]
the associated transformation groupoid

(see [8] for the definition of transformation groupoids): another possibility of defining
MCδ (L) /∼ G is to take the germ at (IdL, ξ).
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The moduli space of deformations of integrable distributions of codimension 1 de-
pends a priori on the DGLA defining couple. We will now prove that the moduli space
MCδγ,X (L) /∼ G andMCδ

γ̂,X̂
(L) /∼ G of deformations of integrable distributions of codi-

mension 1 corresponding to defining couples (γ,X) and (γ̂, X̂) are canonically isomorphic:

P 2. – Let L be a C∞ manifold and ξ ⊂ T (L) an integrable distribution
of codimension 1. Let (γ,X) be a DGLA defining couple and V 6= 0 a ξ-valued vec-
tor field on L. Let UV =

{
α ∈ Z1 (L) : (1 + ιV α) (x) 6= 0, x ∈ L

}
. For α ∈ UV define

FV α = (1 + ιV α)
−1

(α− (ιV α) γ). Then FV : MCδγ,X (L) ∩ UV →MCδγ,X+V
(L) ∩ UV is

an isomorphism which induces an isomorphism

F̃V : MCδγ,X (L) ∩ UV /∼ G →MCδγ,X+V
(L) ∩ UV /∼ G .

Proof. – Let α ∈ MCδγ,X (L)∩UV . The Lemma 4 implies that Ker (γ + α) is integrable.
Since

ιX+V FV α = (1 + ιV α)
−1
ιX+V (α− (ιV α) γ) = (1 + ιV α)

−1
(ιV α− ιV α) = 0,

it follows that FV α ∈ Z1
γ,X+V (L). From Proposition 1 it follows that FV is the restriction

toMCδγ,X (L) ∩ UV of the DGVS-isomorphism (1 + ιV α)
−1

ΘV , where ΘV was defined in
Proposition 1. We have

(γ + FV α) =
(
γ + (1 + ιV α)

−1
(α− (ιV α) γ)

)
= γ + α,

so Ker (γ + α) = Ker (γ + FV α) and by using again the Lemma 4 we obtain
FV α ∈ MCδγ,X+V

(L).

The invariance of FV follows by Remark 8.

From Proposition 1 and Proposition 2 we obtain

C 4. – Let L be a C∞ manifold and ξ ⊂ T (L) an integrable distribution of

codimension 1. Let (γ,X),
(
γ̂, X̂

)
be DGLA defining couples, γ̂ = ±eλγ, X̂ = ±e−λX + V

with λ ∈ C∞ (L) and V a ξ-valued vector field. Then there exists a canonical isomorphism
F : MCδγ,X (L) /∼ G → MCδ

γ̂,X̂
(L) /∼ G between the moduli space of deformations of

integrable distributions of codimension 1 of ξ, F = ΘV ◦Ψλ, Ψλ : Z∗γ,X (L)→ Z∗γ̂,e−λX (L),
ΘV : Z∗γ̂,e−λX (L)→ Z∗(γ̂,X̂) (L), Ψλ (α) = eλα and Θ (α) = ΘV (α) = α+ (−1)

degα
ιV α ∧ γ.

L 5. – Let Y be a vector field on L and ΦY the flow of Y . Then

dχ
(
ΦYt
)

dt |t=0
(0) = −δ (ιY γ) .
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Proof. – We have

dχ
(
ΦYt
)

dt |t=0
(0) =

d

((((
ΦYt
)−1
)∗

(γ) (X)
)−1 ((

ΦYt
)−1
)∗

(γ)− γ
)

dt |t=0

=
((

ΦYt
)−1
)∗

(γ)
d
(((

ΦYt
)−1
)∗

(γ) (X)
−1
)

dt |t=0
(0)

+
((

ΦYt
)−1
)∗

(γ) (X)
−1

d
((

ΦYt
)−1
)∗

dt |t=0

=

d

((((
ΦYt
)−1
)∗

(γ) (X)
)−1

)
dt |t=0

γ +
d
(((

ΦYt
)−1
)∗

(γ)
)

dt |t=0

= LY (γ) (X) γ − LY γ

= (dιY γ) (X) γ + ιY dγ (X) γ − dιY γ − ιY dγ.

By Lemma 3 iv)

ιY dγ = −ιY (ιXdγ ∧ γ) = − (ιY (ιXdγ)) γ + (ιY γ) ιXdγ

= − (dγ (X,Y )) γ + (ιY γ) ιXdγ,

so

dχ
(
ΦYt
)

dt |t=0
(0) = (dιY γ) (X) γ − dγ (Y,X) γ − dιY γ

+ (dγ (X,Y )) γ − (ιY γ) ιXdγ

= (ιXdιY γ) γ − dιY γ − (ιY γ) ιXdγ.(2.17)

Since
LXγ = dιXγ + ιXdγ = ιXdγ

it follows that

διY γ = dιY γ + {γ, ιY γ} = dιY γ + LXγ ∧ ιY γ − γ ∧ LXιY γ(2.18)

= dιY γ + (ιY γ) ιXdγ −X (ιY γ) γ.

From (2.17) and (2.18) we obtain

dχ
(
ΦYt
)

dt |t=0
(0) = −διY γ.

D 8. – A MCδ (L)-valued curve through the origin is a continuous mapping
λ : [−a, a]→MCδ (L), a > 0, such that λ (0) = 0. We say that α is the tangent vector at the
origin of theMCδ (L)-valued curve λ through the origin toMCδ (L) if α = lim

t→0

λ(t)
t = dλ

dt |t=0
.

P 3. – Let α be the tangent vector at the origin of a MCδ (L)-valued curve
through the origin λ, Y a vector field on L and ΦY the flow of Y . Set µ (t) = χ

(
ΦYt
)

(λ (t)).
Then:

i) δα = 0.
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ii) The tangent vector β at the origin of theMCδ (L)-valued curve µ is

β = α− διY γ.

Proof. – i) By Lemma 4, λ (t) verifies the Maurer-Cartan equation for every t. Since
λ (t) = αt+ o (t), we have δα = 0.

ii) β = dµ
dt |t=0

= d
dtχ

(
ΦYt (λ (t))

)
|t=0

=
dχ(ΦYt )

dt |t=0
(0) + α.

The Proposition 3 follows now by Lemma 5.

The Proposition 3 justifies the following definition:

D 9. – The tangent cone T[0]

(
MCδ (L) /∼ G

)
at [0] to MCδ (L) /∼ G is the

collection of cohomology classes inH1 ( Z (L) , δ) of the tangent vectors at 0 toMCδ (L)-valued
curves.

D 10. – We say that the deformation theory is not obstructed at [0] if

T[0]

(
MCδ (L) /∼ G

)
= H1 ( Z (L) , δ) .

R 12. – In general, to establish unobstructedness of a deformation theory is a very
hard problem and conditions as the vanishing of

q : H1 ( Z (L) , δ)→ H2 ( Z (L) , δ) , q (a) = {a, a} ,

will provide only curves of formal solutions to the Maurer-Cartan equation with prescribed
tangent vectors at 0 (see for ex. [1]).

R 13. – There exists a natural isomorphism Θ : Λ∗ (ξ) → Z∗ (L): for α ∈ Λ1 (ξ)

set Θ (α) (X) = 0, Θ (α) (Y ) = α (Y ) if Y ∈ ξ and extend by linearity. Let
db : Λ∗ (ξ) → Λ∗ (ξ) be the differential along the leaves of ξ. By using this isomorphism
we consider db : Z∗ (L)→ Z∗ (L) and for every α ∈ Z∗ (L) we have

(2.19) dbα = ιX (γ ∧ dα) = dα− γ ∧ ιXdα.

Indeed letα ∈ Λp (ξ) andX1, . . . , Xp+1 ∈ ξ. Sinceγ (Xj) = 0, j = 1, . . . , p+1 andγ (X) = 1,
we have

ιX (γ ∧ dα) (X1, . . . , Xp+1) = (γ ∧ dα) (X,X1, . . . , Xp+1) = dα (X1, . . . , Xp+1) .

L 6. – The form ιXdγ is db-closed.

Proof. – From Lemma 3 iii) we obtain

0 = d (γ ∧ ιXdγ) = dγ ∧ ιXdγ − γ ∧ dιXdγ = −γ ∧ dιXdγ

so ιX (γ ∧ dιXdγ) = 0 and the Lemma follows by (2.19).

N 3. – The cohomology class [ιXdγ] ∈ H1 (Λ∗ (ξ) , db) which depends only on ξ
will be denoted by c (ξ).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



294 P. DE BARTOLOMEIS AND A. JORDAN

L 7. – Let α ∈ Zp (L). Then

(2.20) δα = dbα+ ιXdγ ∧ α.

In particular

dbα = δα ⇐⇒ ιXdγ ∧ α = 0.

Proof. – By (2.19) and (2.8) we have

δα = dα+ {γ, α} = dα+ ιXdγ ∧ α− γ ∧ ιXdα = dbα+ ιXdγ ∧ α

and the lemma follows.

R 14. – We would like to mention that Kodaira and Spencer developed in [14] a
theory of deformations of the so called multifoliate structures, which are more general than the
foliate structures. A multifoliate structure on an orientable manifold X of dimension n is an
atlas

(
Ui, (x

α
i )α=1,...,n

)
such that the changes of coordinates verify

∂xαi

∂xβk
= 0 for β � α,

where ( P,=) is a finite partially ordered set, {α} a set of integers such that there is given a map
{α} 7→ [α] of α onto P and the order relation ” v ” is defined by α > β if and only if [α] > [β],
α∼β if and only if [α] = [β]. An usual foliation is the particular case when P = {a, b}, a > b.

Kodaira and Spencer define in [14] subsheafs ΦpP , p ∈ N, of the sheaf of germs of jet forms
of degree p on X which are compatible with the multifoliate structure and a differential D such
that

0→ Θ P
D→ Φ1

P
D→ Φ2

P
D→ · · · D→ ΦnP → 0

is a resolution of the sheaf Θ P of the vector fields tangent to the multifoliate structure. They
define also a Lie bracket [·, ·] on jet forms such that

((
⊕np=1 kerD

)
(X) , D, [·, ·]

)
is a DGLA

and every small deformation of the multifoliate structure is given by a family {v (t)} ⊂ Φ1
P (X)

verifying [v (t) , v (t)] = 0 and v (0) = d. So v (t) + d verifies the Maurer-Cartan equation.

Moreover ∂v
∂t |t=0

∈ Z
(
Φ1

P

)
and the class

[
∂v
∂t |t=0

]
∈ H1 (X,Θ P) represents the infinitesimal

deformation of the multifoliate structure along a tangent vector ∂
∂t .

In our approach, defined only for deformation of foliations of codimension 1, the DGLA
algebra ( Z∗ (L) , δ, {·, ·}) associated to a foliation on a cooriented manifold L is a subalgebra
of the algebra (Λ∗ (L) , δ, {·, ·}) of forms on L. Its definition depends on the choice of a DGLA
defining couple, but the cohomology class of this algebra does not depend on its choice. The
deformations are given by forms in Z1 (L) verifying the Maurer-Cartan equation and the moduli
space takes into account the diffeomorphic deformations. The infinitesimal deformations along
curves are subsets of the first cohomology group of the DGLA ( Z∗ (L) , δ, {·, ·}).
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2.3. Transversally parallelizable foliations

Recall the following

D 11. – Let L be aC∞ manifold and ξ ⊂ T (L) a distribution of codimension 1.
ξ is called transversally parallelizable if there exists a 1-form ω on L such that ξ = kerω and
dω = 0.

P 4. – LetL be aC∞ manifold, ξ ⊂ T (L) a distribution of codimension 1 and
(γ,X) a DGLA defining couple. The following assertions are equivalent:

i) ξ is transversally parallelizable.
ii) c (ξ) = 0.
iii) There exists λ ∈ C∞ (L) such that ιXd

(
eλγ
)

= 0.

iv) There exists a DGLA defining couple
(
γ̂, X̂

)
such that δγ̂,X̂ = db.

Proof. – The assertion i) =⇒ iii) is obvious and iii) ⇐⇒ iv) by Lemma 7.

iv) =⇒ i). We may suppose that λ ∈ C∞ (L) such that γ̂ = eλγ and X̂ = e−λX + V ,
V ∈ ξ. The Lemma 7 applied to 0-forms implies

ιX̂d
(
eλγ
)

= 0

and by Lemma 3 iv) it follows that

d
(
eλγ
)

= −ιX̂d
(
eλγ
)
∧ eλγ = 0.

i) =⇒ ii). Let λ ∈ C∞ (L) such that d
(
eλγ
)

= 0. Since

d
(
eλγ
)

= eλ (dγ + dλ ∧ γ) = eλ (−ιXdγ ∧ γ + dλ ∧ γ) = 0

it follows that

(2.21) dλ ∧ γ = ιXdγ ∧ γ.

We have

(2.22) ιX (dλ ∧ γ) = (ιXdλ) γ − dλ

and

(2.23) ιX (ιXdγ ∧ γ) = −ιXdγ,

so by (2.21), (2.22) and (2.23) we obtain

(2.24) (ιXdλ) γ − dλ = −ιXdγ.

From (2.19) and (2.24) it follows that

dbλ = dλ− (ιXdλ) γ = ιXdγ,

so c (ξ) = 0.

ii) =⇒ i). Let λ ∈ C∞ (L) such that

dbλ = ιXdγ = dλ− (ιXdλ) γ.
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Then

d
(
eλγ
)

= eλ (dγ + dλ ∧ γ) = eλ (−ιXdγ ∧ γ + dλ ∧ γ)

= eλ ((−ιXdγ + dλ) ∧ γ) = eλ ((ιXdλ) γ) ∧ γ = 0.

E 1. – LetM be a compact manifold andHk
DR (M) its de Rham cohomology group

of degree k. Suppose that there exist τ1, . . . , τp closed 1-forms on M such that their classes
[τ1] , . . . , [τp] form a basis of H1

DR (M) and such that [τj ∧ τk] , j, k = 1, . . . , p, j < k, are
linearly independent in H2

DR (M). Let L = S1 ×M endowed with the product foliation given
by ξ = ker ds where (s, x) are variables in S1 ×M . The following assertions are equivalent:

i) β (s, x) = a (s)
p∑
j=1

cjτj (x), cj ∈ R, (s, x) ∈ L.

ii) There exists a curve Γ with values inMCδ (L) /∼ G such that the tangent to Γ at the origin
is [β].

In particular T[0]

(
MCδ (L) /∼ G

)
= C∞

(
S1
)
× H1

DR (M) /R∗ where the action of R∗ is
given by λ (a, h) =

(
λa, λ−1h

)
.

Proof. – We consider the DGLA defining couple (γ,X) =
(
ds, ∂∂s

)
.

i) =⇒ ii). Let β (s, x) = a (s)
p∑
j=1

cjτj (x). Take αt = βt. Then αt ∈ Z1 (L) and

δβ = dbβ = dxβ = 0.
Moreover

{β, β} = 2ιXdβ ∧ β = 2ι ∂
∂s

a′ds ∧ p∑
j=1

cjτj + a

p∑
j=1

cjdτj

 ∧ a p∑
j=1

cjτj = 0.

So αt ∈MCδ (L) and we can consider Γ : t→ [αt] ∈MCδ (L) /∼ G .
ii) =⇒ i). Let αt = tβ + t2σ + o

(
t2
)
∈MCδ (L). Then

{αt, αt} = t2 {β, β}+ o
(
t2
)

and
δαt = dbαt = tdxβ + t2dxσ + o

(
t2
)
.

Since αt ∈ MCδ (L), we obtain dxβ = 0 and {β, β} + 2dxσ = 0, so [β] ∈ H1
DR (M) and

[{β, β}] = 0 ∈ H2
DR (M).

Since ι ∂
∂s
β = 0 we have

β (s, x) =

p∑
j=1

βj (s) τj + dxf (s, x) , f ∈ C∞ (L) .

By Proposition 3 we may suppose β (s, x) =
p∑
j=1

βj (s) τj (x). Then

dβ =

p∑
j=1

β′jds ∧ τj

and

{β, β} = 2ι ∂
∂s
dβ ∧ β = 2

 p∑
j=1

β′jτj

 ∧
 p∑
j=1

βjτj

 = 2
∑
j 6=k

β′jβkτj ∧ τk.
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But
[{β, β}] = 2

∑
j<k

(
β′jβk − β′kβj

)
[τj ∧ τk] = 0 ∈ H2

DR (M)

and from the assumption of linear independence it follows that β′jβk − β′kβj = 0 for every
1 ≤ j < k ≤ p. This means that βj = cja, cj ∈ R, a ∈ C∞

(
S1
)

and β (s, x) =

a (s)
p∑
j=1

cjτj (x), (s, x) ∈ L.

R 15. – In the previous example we have T[0]

(
MCδ (L) /∼ G

)
6= H1 ( Z (L) , δ) so

the deformation theory is obstructed at [0]. The hypotheses are fulfilled in the particular case
where M is a torus.

3. Deformations of Levi-flat hypersurfaces

3.1. Maurer-Cartan equation for Levi-flat deformations

Let M be a complex manifold and L a Levi flat hypersurface of class C∞ in M such that
the Levi foliation of M is co-orientable. In this case there exists r ∈ C∞ (M), dr 6= 0 on L
such that L = {z ∈M : r (z) = 0} and set j : L → M the natural inclusion. As dr 6= 0 on
a neighborhood of L in M we will suppose in the sequel that dr 6= 0 on M .

We denote by J the complex structure on M . Then the distribution ξ = T (L) ∩ JT (L)

is integrable and ξ = ker γ, where γ = j∗ (dcJr). Since dcJ = J−1dJ , we have dcJr = −Jdr.

Let g be a fixed Hermitian metric on M and Z = gradgr/
∥∥gradgr

∥∥2

g
. Then the vector

field X = JZ is tangent to L and verifies

γ (X) = dcJr (JZ) = 1.

It follows that the couple (γ,X) defined above is a DGLA defining couple for the Levi
foliation. For a given defining function, we will fix this DGLA defining couple and when its
dependence on the defining function r has to be emphasized, we will say the DGLA defining
couple associated to r.

Let U be a tubular neighborhood of L in M and π : U → L the projection on L along
the integral curves of Z. As we are interested in infinitesimal deformations we may suppose
U = M .

We will now parametrize the real hypersurfaces near L and diffeomorphic to L as graphs
over L:

Let F =C∞ (L;R) and a ∈ F . Denote

La = {z ∈M : r (z) = a (π (z))} .

Since Z is transverse to L, La is a hypersurface in M . Consider the map Φa : M → M

defined by Φa (p) = q, where

(3.1) π (q) = π (p) , r (q) = r (p) + a (π (p)) .

U is a tubular neighborhood of L, so Φa is a diffeomorphism of M such that Φa (L) = La
and Φ−1

a = π |La .
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Conversely, let Ψ ∈ U ⊂ G =Diff (M), where U is a suitable neighborhood of the identity
in G as in Definition 6. Then there exists a ∈ F such that Ψ (L) = La. Indeed, for x ∈ L, let
q (x) ∈ Ψ (L) such that π (q (x)) = x. By defining a (x) = r (q (x)), we obtain Ψ (L) = La.

So we have the following:

L 8. – Let Ψ ∈ U. Then there exists a unique a ∈ F such that Ψ (L) = La.

It follows that a neighborhood V F of 0 in F is a set of parametrization of hypersurfaces
close to L.

For a ∈ V F , consider the almost complex structure Ja =
(
Φ−1
a

)
∗ ◦ J ◦ (Φa)∗ on M and

denote

(3.2) αa =
(
dcJar (X)

)−1
j∗
(
dcJar

)
− γ.

Then αa ∈ Z1 (L) and

(3.3) ker (γ + αa) = ker j∗
(
dcJar

)
= TL ∩ JaTL.

Let V ∈ TL ∩ JaTL. Then V = Y + θX with Y ∈ TL ∩ JTL and θ a real function on L.
By (3.3) we have

dcJar (V ) = j∗dcJar (Y ) + θj∗dcJar (X) = 0,

so
θ = −

(
dcJar (X)

)−1
dcJar (Y ) = −αa (Y )

and it follows that

(3.4) TL ∩ JaTL = {Y − (αa (Y ))X : Y ∈ TL ∩ JTL} .

Since
(3.5)
π∗ (TLa ∩ JTLa) =

(
Φ−1
a

)
∗ (TLa ∩ JTLa) = TL ∩

(
Φ−1
a

)
∗ (J (Φa)∗ TL) = TL ∩ JaTL

from (3.3), (3.4) and (3.5) we obtain the following

L 9. – For every a ∈ V F the form αa is the unique form in Z1 (L) verifying

ker (γ + αa) = π∗ (TLa ∩ JTLa) .

Moreover,

ker (γ + αa) = ker j∗
(
dcJar

)
= π∗ (TLa ∩ JTLa) = TL ∩ JaTL

= {Y − (αa (Y )) JZ : Y ∈ TL ∩ JTL} .

By using Lemma 9 and Lemma 4 we can state the following

C 5. – For every a ∈ V F , the following assertions are equivalent:
i) La is Levi flat.
ii) αa satisfies the Maurer-Cartan equation in ( Z∗ (L) , δ, {·, ·}) i.e.,

(3.6) δαa +
1

2
{αa, αa} = 0.

R 16. – Suppose now that a, b ∈ V F , Φ ∈ G = Diff (L) and χ (Φ) (αa) = αb,
where χ (Φ) is the group action defined in (2.14). From Lemma 9 and Remark 8 it follows that
La is Levi flat if and only if Lb is Levi flat.
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N 4. – Set E= {αa : a ∈ V F }.

R 17. – E parametrizes the codimension 1 distributions close to TL ∩ JTL which
are of the form TL ∩ J̃TL for J̃ complex structure (possible non integrable) close to J , where
J̃ = (I + S) J (I + S)

−1 with S ∈ Λ0,1
J (M)⊗ T (M) close to 0.

By using the notations of Definition 7 , we are now able to put in evidence the moduli
space of deformations of Levi-flat manifolds of L:

D 12. – Let R F = {ζ ∈ D : ζ = ker (γ + β) , β ∈ E}. The moduli space of
deformations of Levi-flat manifolds of L is π−1 (π ( I ∩ R F )) / G.

R 18. – From Remark 10 it follows that the corresponding local action of G
on E is given by αb = χ (Φ) (αa), where a, b ∈ V F and Φ ∈ G is sufficiently close to the
identity. If r, r′ ∈ C∞ (M), dr 6= 0, dr′ 6= 0 on L such that L = {z ∈M : r (z) = 0} =

{z ∈M : r′ (z) = 0}, r = hr′ with h > 0 of class C∞ in a neighborhood L. So
{z ∈M : r (z) = a (π (z))} =

{
z ∈M : r′ (z) = h−1 (z) a (π (z))

}
. It follows that the

previous definition does not depend on the choice of the defining function r of L and by Proposi-
tion 1 it follows that it does not depend on the choice of the metric g either. We remark also that
the moduli space of deformations of Levi-flat manifolds of L identifies Levi flat hypersurfaces
up to a foliated diffeomorphism and not up to a CR diffeomorphism.

3.2. Equations for infinitesimal Levi-flat deformations

Let M be a complex manifold, J the complex structure on M , L a Levi flat hypersurface
in M and I an open interval in R containing the origin. A 1-dimensional Levi-flat defor-
mation of L is a smooth mapping Ψ : I × M → M such that Ψt = Ψ (t, ·) ∈ Diff (M),
Lt = ΨtL is a Levi flat hypersurface in M for every t ∈ I and L0 = L. By the previous
subsection there exists a family (at)t∈I in V F such that π∗ (TLat ∩ JTLat) = ker (γ + αat)

and αat satisfies the Maurer-Cartan equation (3.6) in ( Z∗ (L) , δ, {·, ·}) for every t. We will
say that the family (at)t∈I is a family in V F defining a Levi-flat deformation of L.

We define now δc : Z∗ (L)→ Z∗ (L): for α ∈ Zp (L) and V1, . . . , Vp+1 ∈ T (L) ∩ JT (L)

set δcα (V1, . . . , Vp+1) = J−1δJα (V1, . . . , Vp+1) and δcα (X,V1, . . . , Vp) = 0. By extending
this definition by linearity we obtain δcα ∈ Zp+1 (L).

Recall that (γ,X) is a DGLA defining couple, where γ = j∗ (dcJr) and X = JZ =

J
(

gradgr/
∥∥gradgr

∥∥2
)

, r is a defining function for L and g a Hermitian metric on M .

P 5. – Let L be a Levi flat hypersurface in a complex manifold M , (at)t∈I
a family in V F defining a Levi-flat deformation of L and p = dat

dt |t=0
.Then

dαat
dt |t=0

= δcp.
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Proof. – Since αat (X) = 0 for every t it follows that

(3.7)
dαat
dt |t=0

(X) = 0 = (δcp) (X) .

Let V be a section of TL∩ JTL, which will be identified for simplicity with j∗V . Then (3.2)
gives

dαat
dt |t=0

(V ) =
d

dt |t=0

((
dcJat r (X)

)−1
)
j∗
(
dcJa0 r

)
(V )

+
(
dcJa0 (JZ)

)−1 d

dt |t=0
j∗
(
dcJat r

)
(V ) .

But

j∗
(
dcJa0 r

)
(V ) = j∗ (dcJr) (V ) = 0

and (
dcJa0 r (X)

)−1

= (dcJr (X))
−1

= 1,

so

dαat
dt |t=0

(V ) =
d

dt |t=0
j∗
(
dcJat r

)
(V ) =

d

dt |t=0
(−Jatdr) (V )

= − (dr)
d

dt |t=0
(JatV ) .(3.8)

We have

d

dt |t=0
(JatV ) =

d

dt |t=0

((
Φ−1
at

)
∗ ◦ J ◦ (Φat)∗

)
(V )

=
d

dt |t=0

(
Φ−1
at

)
∗ (JV ) + J

d

dt |t=0
(Φat)∗ (V ) .(3.9)

By using the definition (3.1) of Φat we have

r (Φat (z)) = r (z) + at (π (z)) = r (z) + tp (π (z)) + o (t) ,

where π is the projection along the integral curves of Z. It follows that

(3.10)
d (Φat)∗
dt |t=0

= (p ◦ π)Z.

If we consider a smooth extension p̃ of p to M and the flow Φp̃Z of p̃Z, we have

dΦp̃Zt
dt

(z) = (p̃Z)
(

Φp̃Zt (z)
)

and restricting to L, by (3.10) we obtain

(3.11)
d (Φat)∗
dt |t=0

=
d
(

Φp̃Zt

)
∗

dt |t=0
= pZ.
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So (3.9) and (3.11) give

d

dt |t=0
(JatV ) =

d

dt |t=0

(
ΦpZ−t

)
∗

(JV ) + J
d

dt |t=0

(
ΦpZt

)
∗

(V )

= − LpZ (JV ) + J LpZ (V )

= − [pZ, JV ] + J [pZ, V ]

= −p [Z, JV ] + JV (p)Z + pJ [Z, V ]− V (p) JZ.

Replacing this formula in (3.8) we obtain

d

dt |t=0
αat (V ) = − (dr) (−p [Z, JV ] + JV (p)Z + pJ [Z, V ]− V (p) JZ) .

Since dr (JZ) = 0 and dr (Z) = 1 it follows that

d

dt |t=0
αat (V ) = (dr) (p [Z, JV ])− JV (p)− p (dr) J [Z, V ]

= pdr ([Z, JV ])− JV (p) + p (dcr) [Z, V ] .(3.12)

By using

0 = ddr (Z, JV ) = Z (dr (JV ))− JV (dr (Z))− dr [Z, JV ]

we obtain

dr [Z, JV ] = 0

and (3.12) becomes

(3.13)
d

dt |t=0
αat (V ) = −JV (p) + p (dcr) [Z, V ] .

Since dcr (V ) = −dr (JV ) = 0 and dcr (Z) = −dr (JZ) = 0, it follows that

ddcr (Z, V ) = Z (dcr (V ))− V (dcr (Z))− dcr ([Z, V ]) = −dcr ([Z, V ])

and from (3.13) we deduce

(3.14)
d

dt |t=0
αat (V ) = −JV (p)− pddcr (Z, V ) = dcp (V )− pJ (ιJZdd

cr) (V ) .

Now

(3.15) (δcp) (V ) = −δp (JV ) = dcp (V )− {γ, p} (JV )

and

(3.16) {γ, p} (JV ) = p LXγ (JV )− ( LXp) γ (JV ) .

Since γ (JV ) = 0 and ιXγ = 1, (3.16) becomes

(3.17) {γ, p} (JV ) = pιXdγ (JV ) .

Therefore, recalling now that γ = j∗ (dcr) and X = JZ, from (3.17) we obtain

{γ, p} (JV ) = p (ιJZdd
cr) (JV )

and from (3.15) it follows that

(3.18) (δcp) (V ) = dcp (V )− p (ιJZdd
cr) (JV ) .
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Finally, by (3.14), (3.18) and (3.7) we conclude

(3.19)
dαat
dt |t=0

= δcp .

N 5. – For a DGLA defining couple (γ,X) we denote b = ιXdγ. By Lemma 6,
b is db-closed and c (T (L) ∩ JT (L)) = [b] ∈ H1 (Λ∗ (ξ) , db). Let F be a compact leaf of the
Levi foliation. Then there exists a unique harmonic form bF ∈ Λ1 (F ) with respect to the fixed
metric g such that

[
b|F
]

= [bF ] ∈ H1 (F, db), where b|F is the restriction of b to F .

C 6. – Let L be a Levi flat hypersurface in a complex manifold M , (at)t∈I
a family in V F defining a Levi-flat deformation of L and p = dat

dt |t=0
. Then:

(3.20) δδcp = 0

or equivalently

(3.21) dbd
c
bp− dbp ∧ Jb− dcbp ∧ b− pJdcbb− pb ∧ Jb = 0.

Proof. – αat verifies the Maurer-Cartan equation (3.6) in ( Z∗ (L) , δ, {·, ·}) so

δαat +
1

2
{αat , αat} = 0

for every t. Since
d

dt |t=0
{αat , αat} = 0,

(3.20) follows from (3.19).
By (2.20) we have

δcp = −Jδp = −J (dbp+ pιXdγ) = dcbp− pJb

and

δδcp = δ (dcbp− pJb) = db (dcbp− pJb) + b ∧ (dcbp− pJb)
= dbd

c
bp− dbp ∧ Jb− pdbJb− dcbp ∧ b− pb ∧ Jb.

So (3.20) is equivalent to (3.21).

P 6. – LetM be a complex manifold and L aC∞ Levi flat hypersurface inM .
Let F be a compact leaf of the Levi foliation. Then there exists a defining function ρ of L such
that the DGLA defining couple

(
γ̂, X̂

)
associated to ρ verifies

(3.22) bF = ιX̂dγ̂|F = ιX̂ (dbd
c
bρ)|F .

Proof. – Let r be a C∞ defining function for L and (γ,X) the DGLA defining couple
associated to r.

Since
[
b|F
]

= [bF ] ∈ H1 (F, db), there exists λ ∈ C∞ (F ) such that

bF = b|F + dbλ.

By using (2.19) we obtain

(3.23) bF = ιXdbd
c
br|F + dλ− (ιXdλ) j∗ (dcr)|F .

We choose a smooth extension of λ on M which we denote by λ too, and set ρ = e−λr.
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We have
dc
(
e−λr

)
= e−λ (dcr − rdcλ)

and

(3.24) ddc
(
e−λr

)
= e−λ (−dλ ∧ dcr + rdλ ∧ dcλ+ ddcr − dr ∧ dcλ− rddcλ) .

Let V be a section of TL ∩ JTL. Since r = 0 on L, j∗dcr (X) = 1 and j∗dcr (V ) = 0,
from (3.24) we obtain

ιeλXdd
c
(
e−λr

)
(V ) = ddc

(
e−λr

) (
eλX,V

)
= e−λ

(
(−dλ ∧ dcr)

(
eλX,V

))
+ ddcr

(
eλX,V

)
− dr ∧ dcλ

((
eλX,V

))
= ((−dλ ∧ dcr) (X,V ) + ιeλXdd

cr (V ))

= (dλ (V ) + ιeλXdd
cr (V )) .(3.25)

But (3.23) and (3.25) give

ιeλXdd
c
(
e−λr

)
(V ) = bF (V ) on F

and this equality proves (3.22).

P 7. – Let L be a Levi flat hypersurface in a Kähler manifold M , (at)t∈I
a family in V F defining a Levi-flat deformation of L and p = dat

dt |t=0
. Let F be a compact

leaf of the Levi foliation and ∂b, ∂b the tangential operators along the leaves. Then

(3.26) dbd
c
bp− dbp ∧ JbF − dcbp ∧ bF − pbF ∧ JbF = 0

or equivalently

(3.27) ∂b∂bp+ ∂bp ∧ θF − ∂bp ∧ θF − pθF ∧ θF = 0

where
θF = b1,0F =

1

2
(bF − iJbF ) .

Proof. – We choose a defining function of L as in Proposition 6. We consider on F the
metric induced by the Kähler metric of M . Since bF is a harmonic form on F with respect
to this Kähler metric, it follows that JbF is also a harmonic form. So dbJbF = dcbJbF = 0

and (3.26), (3.27) follow from (3.21).

3.3. A uniqueness theorem for partial differential equations

In this section we prove a uniqueness theorem for second order partial differential equa-
tions on compact Kähler manifolds which will be used in the next sections to give infinitesi-
mal rigidity results for Levi flat hypersurfaces.

For ϕ,ψ ∈ Λk (M), we use the notations

〈ϕ,ψ〉 = ϕ ∧ ∗ψ, 〈〈ϕ,ψ〉〉 =

∫
M

〈ϕ,ψ〉 , ‖ϕ‖2 = 〈〈ϕ,ϕ〉〉 , ‖ϕ‖2∞ = sup
M
∗ 〈ϕ,ϕ〉 ,

where ∗ is the Hodge operator. If T ∈ End (Λ∗M), we denote T c = J−1TJ , where J is the
complex structure of M .
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T 1. – Let M be a compact Kähler manifold and β 6= 0 a harmonic 1-form on M .
Let A ∈ End (Λ∗M) defined by Aα = β ∧ α and P = d + A . Suppose that ∆ − A∗A is
positive defined on a subspace E ⊂ Λ0M , where ∆ is the Laplace operator on M . Then f = 0

is the unique solution of the equation PP cf = 0, f ∈ E. In particular ∆ − A∗A is positive
defined if ‖β‖2∞ < λ1

∆, where λ1
∆ is the smallest strictly positive eigenvalue of the Dirichlet

form f 7→ 〈〈4f, f〉〉 and the conclusion of the theorem is valid in this case.

Proof. – Let f ∈ E such that

(3.28) PP cf = dP cf + β ∧ P cf = 0.

Let ω be the Kähler form on M and Λ : Λk+2M → ΛkM the adjoint of the exterior
multiplication by ω, Λα = ∗−1 (ω ∧ ∗α). Then (3.28) gives

(3.29) ΛdP cf = −Λ (β ∧ P cf) = −〈ω, β ∧ P cf〉 .

Step 1. – We have

(3.30) 〈ω, β ∧ P cf〉 = 〈Jβ, P cf〉 .

Indeed, let (θ1, . . . , θn, Jθ1, . . . , Jθn) be a local orthonormal basis at z for Λ1 (M) such
that ω (z) =

∑
j

dθj ∧ dJθ. Then by writing β =
∑
j

ajdθj +
∑
j

bjdJθj , P cf =
∑
j

cjdθj +∑
j

djdJθj , we have

〈ω, β ∧ P cf〉 (z) =
∑
j

(ajdj − bjcj) (z) dV = 〈Jβ, P cf〉 (z) .

Step 2. – Let B = dc − P c. Then (Λd+B∗)P cf = 0.
We will compute B∗ on Λ0 (M): let ϕ ∈ Λ0 (M) , ψ ∈ Λ1 (M). Since Bα = −J−1AJα =

−J−1β ∧ Jα, we have

(3.31) 〈〈Bϕ,ψ〉〉 =

∫
M

ϕJβ ∧ ∗ψ = 〈〈ϕ,B∗ψ〉〉 =

∫
M

ϕ ∗B∗ψ

and it follows that
B∗ψ = ∗ (Jβ ∧ ∗ψ) , ψ ∈ Λ1 (M) .

In particular B∗P cf = ∗ (Jβ ∧ ∗P cf) = ∗ 〈Jβ, P cf〉 and from (3.29) and (3.30) we obtain

(3.32) (Λd+B∗)P cf = 0.

Step 3. – (P c)
#
P cf = 0 where (P c)

#
= − ∗ P c∗.

We have

(3.33) (P c)
#

= − ∗ (dc −B) ∗ = (dc)
∗

+B∗ = (dc −B)
∗

+ 2B∗ = (P c)
∗

+ 2B∗.

Since M is Kähler, by using (3.33) we have

[d,Λ] = − (dc)
∗

= − (P c)
#

+B∗

so
(P c)

#
P cf = (− [d,Λ] +B∗)P cf = (Λd+B∗)P cf.

From (3.32) we conclude that

(3.34) (P c)
#
P cf = 0.
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Step 4. – ‖df‖ = ‖fβ‖.
By (3.33) and (3.34) we have

(3.35)
〈〈

(P c)
#
P cf, f

〉〉
=
〈〈(

(P c)
∗

+ 2B∗
)
P cf, f

〉〉
= ‖P cf‖2 + 2 〈〈P cf,Bf〉〉 = 0.

But

〈〈P cf,Bf〉〉 = 〈〈P cf, fJβ〉〉 = 〈〈P cf, fJβ〉〉 = 〈〈−JPf, fJβ〉〉

= 〈〈−Pf, fβ〉〉 = 〈〈− (d+A) f,Af〉〉 = −〈〈df,Af〉〉 − ‖Af‖2(3.36)

and

(3.37) 〈〈df,Af〉〉 =

∫
M

fdf ∧ ∗β =
1

2

∫
M

df2 ∧ ∗β = −1

2

∫
M

f2d (∗β) = 0

because β is harmonic and

‖d (∗β)‖ = ‖d∗β‖ = 0.

From (3.35), (3.36) and (3.37) it follows that

(3.38) ‖P cf‖2 − 2 ‖Af‖2 = 0.

But

‖P cf‖2 = ‖Pf‖2 = 〈〈(d+A) f, (d+A) f〉〉 = ‖df‖2 + ‖Af‖2

and by replacing this expression of ‖P cf‖2 in (3.38) we complete the proof of step 4.

Step 5. – f = 0 and the case sup
M
∗ 〈β, β〉 < λ1

∆.

Since

‖df‖2 = 〈〈df, df〉〉 = 〈〈d∗df, f〉〉 = 〈〈∆f, f〉〉

and

‖fβ‖2 = ‖Af‖2 = 〈〈A∗Af, f〉〉

by the step 4 it follows that

〈〈(∆−A∗A) f, f〉〉 = 0

which implies f = 0.

Finally, as in the computation (3.31) of B∗ we obtain

A∗ψ = ∗ 〈β, ψ〉 , ψ ∈ Λ1 (M)

and so

A∗Af = ∗f 〈β, β〉 .

In particular

〈〈(∆−A∗A) f, f〉〉 = 〈〈∆f, f〉〉 − 〈〈∗f 〈β, β〉 , f〉〉 ≥
(
λ1

∆ − sup
M
∗ 〈β, β〉

)
‖f‖2 .

So if ‖β‖2∞ < λ1
∆, the operator ∆−A∗A is positive definite and the theorem is proved.
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3.4. Infinitesimal rigidity results for Levi flat hypersurfaces

By using Corollary 3 and Corollary 5 it is natural to give the following definition:

D 13. – LetL be a Levi flat hypersurface in a complex manifoldM . We say that
L is infinitesimally rigid (respectively strongly infinitesimally rigid), if for any family (at)t∈I
in V F defining a Levi-flat deformation of L[

dαat
dt |t=0

]
= 0 ∈ H1 ( Z (L) , δ) ,

respectively
dαat
dt |t=0

= 0.

T 2. – LetM be a smooth complex manifold and L a compact connected transver-
sally parallelizable compact Levi flat hypersurface inM . ThenL is strongly infinitesimally rigid.

Proof. – Since L is transversally parallelizable, every leaf of the Levi foliation is com-
pact or every leaf of the Levi foliation is dense (see for example [7] for the properties of
transversally parallelizable manifolds). By Proposition 4 we can consider a DGLA defining
couple (γ,X) such that b =ιXdγ = 0 and δ = db.

Let (at)t∈I be a family in V F defining a Levi-flat deformation ofL and p = dat
dt |t=0

. Then
(3.21) becomes

(3.39) dbd
c
bp = 0.

Suppose that every leaf of the Levi foliation of L is compact. By (3.39) it follows that p is
constant on each leaf, so δcp = 0. By Proposition 5 it follows thatL is strongly infinitesimally
rigid.

Suppose now that every leaf of the Levi foliation is dense. Let z0 ∈ L such that
p (z0) = sup

L
p and let Lz0 be the leaf of the Levi foliation through z0. By (3.39) it fol-

lows that p is constant on Lz0 . Since Lz0 is dense, p is constant on L and L is strongly
infinitesimally rigid.

Now we study the case of infinitesimal rigidity of general Levi flat hypersurfaces in smooth
compact connected Kähler manifolds.

L 10. – Let M be an n-dimensional Kähler manifold, L a Levi flat hypersurface in
M and F a compact leaf of the Levi foliation. Let (at)t∈I a family in V F defining a Levi-flat
deformation of L and p = dat

dt |t=0
. Then∫
F

pbF ∧ JbF ∧ ωn−2 = 0

where ω is a Kähler form on M and J the complex structure of M .
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Proof. – From (3.27) it follows that∫
F

∂b∂bp ∧ ωn−2 +

∫
F

∂bp ∧ θF ∧ ωn−2 −
∫
F

∂bp ∧ θF ∧ ωn−2 −
∫
F

pθF ∧ θF ∧ ωn−2 = 0.

Since ∂bθF = ∂bθF = 0, we have∫
F

∂b∂bp ∧ ωn−2 =

∫
F

db
(
∂bp ∧ ωn−2

)
= 0,∫

F

∂bp ∧ θF ∧ ωn−2 =

∫
F

∂b
(
pθF

)
∧ ωn−2 =

∫
F

db
(
pθF ∧ ωn−2

)
= 0,∫

F

∂bp ∧ θF ∧ ωn−2 =

∫
F

∂b (pθF ) ∧ ωn−2 =

∫
F

db
(
pθF ∧ ωn−2

)
= 0,

and the lemma is proved.

T 3. – Let M be an n-dimensional Kähler manifold, J the complex structure of
M , ω a Kähler form on M and L a Levi flat hypersurface in M with compact leaves. Suppose
that for every leaf F of the Levi foliation such that bF 6= 0, ∆F − TF is positive definite
on BF , where ∆F is the Laplace operator on F , TF ∈ End

(
Λ0 (F )

)
is the operator defined

by TFϕ = ∗ϕ 〈bF , bF 〉 and

BF=

{
f ∈ C∞ (M) :

∫
F

fbF ∧ JbF ∧ ωn−2 = 0

}
.

ThenL is strongly infinitesimally rigid. In particular this is true if ‖bF ‖2∞ < λF for every leafF
of L, where λF is the smallest strictly positive eigenvalue of the Dirichlet form f 7→

∫
F
|5f |2

restricted toBF and ‖bF ‖2∞ = sup
F
∗ 〈bF , bF 〉.

Proof. – Let (at)t∈I be a family in V F defining a Levi-flat deformation of L and
p = dat

dt |t=0
. Let F be a leaf of the Levi foliation. We recall that by (2.20) we have

δα = dbα+ bF ∧ α.

If bF = 0, (3.20) implies that ddcp = 0 and it follows that p is constant on F.

Suppose now that bF 6= 0. By (3.20) we have δδcp = 0 and by Lemma 10 p ∈ BF . We can
apply the uniqueness Theorem 1 on F for β = bF and it follows that p = 0 on F .

So δcp = 0 onL and by Proposition 5L is strongly infinitesimally rigid. The last assertion
follows also by Theorem 1.

R 19. – Note that in general bF is not continuous with respect to F .

3.5. Non existence of Levi flat transversally parallelizable hypersurfaces in CPn, n ≥ 2

One of the basic questions in the theory of foliations is the following: Let F be a singular
holomorphic foliation of codimension 1 of CP2. Does every leaf of F accumulate to the
singular set of F ? This question led to the conjecture of the non-existence of smooth Levi flat
hypersurfaces inCPn, n > 2, and under suitable hypotheses, in compact complex manifolds.

We recall that for CPn, n > 3, the positive answer to this question was given in [15] and
[18]. For n = 2 the problem is still open. In this paragraph we prove the non existence of
transversally paralelizable Levi flat hypersurfaces in:
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a) connected complex manifolds M such that for every p 6= q ∈ M and every real
hyperplane Hq in TqM there exists a holomorphic vector field Y on M such that Y (p) = 0

and Y (q)⊕Hq = TqM (Theorem 5). The proof uses techniques developed in this paper.
b) complex compact Kähler surfaces M such that dimH2 (M) = 1 (Theorem 6). The

proof of this result was communicated to us by M. Brunella [2].
Both Theorems 5 and 6 imply that there are no transversally parallelisable Levi flat

hypersurfaces in CP2 (Theorem 4).

T 4. – There are no transversally parallelizableC2 Levi flat hypersurfaces inCPn,
n ≥ 2.

Proof. – Recall that Y.-T. Siu’s theorem [19] and [11] prove the non existence of C2 Levi
flat hypersurfaces in CPn, n ≥ 3.

Let L be a transversally parallelizable Levi flat hypersurface in CP2. Suppose that Y is
a holomorphic vector field on M . Then

(
ΦYt (L)

)
t

is a Levi-flat deformation of L and let
(at)t∈I be a family in V F defining this Levi-flat deformation of L. Set p = dat

dt |t=0
.

By (3.19) we have
d

dt |t=0
αat = δcp .

Theorem 2 implies that L is strongly infinitesimally rigid and it follows that δcp = 0. By
Lemma 4, we may suppose that δ = db, so dcbp = 0.

As a Levi flat hypersurface in CP2 has no compact leaves, every leaf is dense in L and it
follows that p is constant.

Let g be a fixed Hermitian metric on CP2 and Z = gradgr/
∥∥gradgr

∥∥2

g
. As in 3.1,

at (X) = r (X (t)), X ∈ CP2 with X (t) = γZ,X ∩ ΦYt (L) and γZ,X the integral curve
of Z passing through X. We have

Y = Yn + Yt

where
Yn = dr (Y )Z, Yt (r) = Y − dr (Y )Z

are the normal and tangential components of Y . Since at (X) = r
(

ΦYnt (X)
)

it follows that

p =
dat
dt |t=0

= dr (Yn) = Yn (r) .

AsYn = 〈Z, Y 〉g Z, where 〈·, ·〉g is the scalar product induced by gwe obtain that p = 〈Z, Y 〉g
and we conclude that 〈Z, Y 〉g is constant on L for every holomorphic vector field on M .

Let X ∈ L and consider homogeneous coordinates [z0, z1, z2] in CP2 such that
X = [1, 0, 0] and the Euler vector field Y such that Y ([1, 0, 0]) = 0. Since

〈Z, Y 〉g (X) = 〈Z ([1, 0, 0]) , Y [1, 0, 0]〉g = 0,

it follows that 〈Z, Y 〉g = 0 and this means that Y is tangent toL. But by Siu’s Proposition 2.3
[19], this gives a contradiction.

This theorem can be generalized and proved without using Y.-T. Siu’s Proposition 2.3
from [19] :
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T 5. – Let M be a connected complex manifold such that for every p 6= q ∈ M

and every real hyperplane Hq in TqM there exists a holomorphic vector field Y on M such that
Y (p) = 0 and Y (q)⊕Hq = TqM . Then there are no compact transversally parallelizable Levi
flat hypersurfaces in M . The hypotheses are fulfilled if M = CPn, n ≥ 2.

Proof. – Let L be a transversally parallelizable Levi flat hypersurface in M . As in the
proof of Theorem 4, 〈Z, Y 〉g is constant on every leaf of the Levi foliation of L for every
holomorphic vector field on M . Let p ∈ L and let q be a distinct point of the leaf F passing
through p. Let Y be a holomorphic vector field onM such that Y (p) = 0 and Y (q)⊕TqL =

TqM . Since Y (p) = 0 it follows that Y is tangent to F and we obtain a contradiction.

L 11. – Let L be a real hypersurface in a complex compact Kähler surface M such
that M\L = U1 ∪ U2 where U1, U2 are open disjoint subsets of M and let ω be the (1, 1)-form
associated to the Kähler metric of M . Suppose that dimH2 (M) = 1. Then

i) ω is exact on U1 or on U2;

ii) the restriction of ω to L is exact.

Proof. – i) Let ψ be a cycle such that H2 (M) = C [ψ]. Suppose that ω is neither exact
on U1 nor on U2. Then there exist 2-cycles ϕj ⊂ Uj such that

∫
ϕj
ω 6= 0, j = 1, 2. But

[ϕj ] = cj [ψ], j = 1, 2 and [ϕ1] [ϕ2] = 0. Contradiction.

ii) Suppose that ω is exact on U1. Let ϕ be a 2-cycle ϕ on L. We can approximate ϕ by
2-cycles ϕε on U1. Since

∫
ϕε
ω = 0, it follows that

∫
ϕ
ω = 0,.

C 7. – Under the hypotheses of Lemma 11 we have
∫
L
γ∧ω = 0 for every closed

1-form γ on L.

Proof. – By Lemma 11, ω = dα on L, so∫
L

γ ∧ ω =

∫
L

d (γ ∧ α) = 0.

T 6. – Let L be a real hypersurface in a complex compact Kähler surface M such
that M\L = U1 ∪U2 where U1, U2 are open disjoint subsets of M such that dimH2 (M) = 1.
There are no transversally parallelizable Levi flat hypersurfaces in M .

Proof. – Let ω be the (1, 1)-form associated to the Kähler metric of M . Let L be a Levi
flat transversally parallelizable hypersurface in M such that the Levi foliation of L is given
by the 1-form γ. Then γ ∧ ω (x) 6= 0 for every x ∈ L. Indeed, let x ∈ L and choose
local coordinates (t1, t2, t3) in a neighborhood of x such that x = 0, γ = α (t1) dt1 and
(0, t2, t3) are coordinates on the leafLx throughx. There exist local holomorphic coordinates
z ∈ (z1, z2) in a neighborhood V of x such that Lx = {z ∈ V : z2 = 0}. It follows that
α (0) dt1 ∧ dz1 ∧ dz1 6= 0. Consequently

∫
L
γ ∧ ω > 0 or

∫
L
γ ∧ ω < 0 and we obtain a

contradiction by Corollary 7.
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