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DEFORMATIONS OF LEVI FLAT HYPERSURFACES
IN COMPLEX MANIFOLDS

BY Paoro DE BARTOLOMEIS AND ANDREI IORDAN

ABSTRACT. — We first give a deformation theory of integrable distributions of codimension 1. This
theory is used to study Levi-flat deformations: a Levi-flat deformation of a Levi flat hypersurface L in a
complex manifold is a smooth mapping ¥ : IxM — M suchthat ¥, = ¥ (¢,-) € Diff (M), Ly = ¥+L
is a Levi flat hypersurface in M for every t € I and Lo = L. We define a parametrization of families
of smooth hypersurfaces near L such that the Levi flat deformations are given by the solutions of the
Maurer-Cartan equation in a DGLA associated to the Levi foliation. We say that L is infinitesimally
rigid if the tangent cone at the origin to the moduli space of Levi flat deformations of L is trivial.
We prove the infinitesimal rigidity of compact transversally parallelizable Levi flat hypersurfaces in
compact complex manifolds and give sufficient conditions for infinitesimal rigidity in K&hler manifolds.
As an application, we prove the nonexistence of transversally parallelizable Levi flat hypersurfaces in
a class of manifolds which contains CP,.

REsSUME. — Nous commengons par présenter une théorie des déformations de distributions inté-
grables de codimension 1. Cette théorie est utilisée pour étudier les déformations d’hypersurfaces Levi
plates: une déformation Levi plate d’une hypersurface Levi plate L dans une variété complexe M est
une application lisse ¥ : I x M — M telle que ¥, = ¥ (¢,-) € Diff (M), Ly = UL est une hy-
persurface Levi plate dans M pour tout ¢ € I et Lo = L. Nous définissons une paramétrisation des
hypersurfaces Levi plates au voisinage de L telle que les déformations d’hypersurfaces Levi plates de L
sont données par les solutions de ’équation de Maurer-Cartan dans une DGLA associée au feuilletage
de Levi.

Nous disons que L est infinitésimalement rigide si le cone tangent a ’origine de I’espace de modules
des déformations Levi plates de L est trivial. Nous prouvons que les hypersurfaces de Levi plates com-
pactes transversalement parallélisables dans les variétés complexes compactes sont infinitésimalement
rigides et nous donnons des conditions suffisantes pour la rigidité infinitésimale dans les variétés de
Kéhler. Comme application, nous démontrons la non existence d’hypersurfaces Levi plates transver-
salement parallélisables dans une classe de variétés qui contient I’espace projectif complexe de dimen-
sionn > 2.

The first author was supported by the M.I.U.R. project “Geometric Properties of Real and Complex Manifolds”
and by G.N.S.A.G.A. of INdAM.

0012-9593/02/© 2015 Société Mathématique de France. Tous droits réservés
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282 P. DE BARTOLOMEIS AND A. JORDAN

1. Introduction

Let M be a complex manifold and L a real hypersurface of class C? in M such that
M\L =y UQy, Q; NQy = @. Lis Levi flat if it satisfies one of the following equivalent
conditions:

1) Q; and Q, are pseudoconvex domains.
2) L is foliated by complex hypersurfaces of M.
3) The Levi form of L vanishes.

It is well known that in general, if L is not of class C2?, we have only 3) = 2) = 1).

One of the oldest result concerning Levi flat hypersurfaces is a theorem of E. Cartan [3]
which states that a real analytic Levi flat hypersurface is locally isomorphic to the set of
vanishing of the real part of a holomorphic function. A generalization of this theorem for
singular Levi flat hypersurfaces can be found in [9].

Recent research on Levi flat hypersurfaces in complex manifolds were motivated by the
following conjecture of D. Cerveau [4]: there are no smooth Levi flat hypersurfaces in the
complex projective space CP,,, n > 2.

Forn > 3, this conjecture was proved by Lins Neto for real analytic Levi flat hypersurfaces
[15], by Y.-T. Siu for Levi flat hypersurfaces of class C*2 [18] and by A. Iordan and F. Matthey
for Lipschitz hypersurfaces of Sobolev class W*, s > 5/2 [11]. Despite several attempts to
prove this conjecture for n = 2, its proof is still incomplete.

Unlike CP,,, n > 2, the complex tori T,, = C™/T" contains the Levi flat hypersurfaces
m (327 'Ru; + u) where w : C" — T, is the canonical projection, u;, j = 1,...,2n — 1,
are R-linearly independent vectors in I" and v € C” [16]. It was conjectured in [16] that for
every compact Levi flat hypersurface M in T,,, 7= (M) is a union of affine hyperplanes.

In this paper we study the deformations of smooth Levi flat hypersurfaces in complex
manifolds. The theory of deformations of complex manifolds was intensively studied from
the 50s beginning with the famous results of Kodaira and Spencer [13] (see for ex. [12], [21]).
In[17], Nijenhuis ans Richardson adapted a theory initiated by Gerstenhaber [6] and proved
the connection between the deformations of complex analytic structures and the theory
of differential graded Lie algebras (DGLA). This theory was developed following ideas of
Deligne by Goldman and Millson [§].

The main results of this paper may be summarized as follows.

In the first chapter we consider integrable distributions of codimension 1 on smooth
manifolds and we define a DGLA associated to the foliation such that the deformations of
integrable distributions of codimension 1 are given by solutions of Maurer-Cartan equation
in this algebra. As the examples show, this theory is highly non trivial and it seems to be
interesting by itself. We mention that Kodaira and Spencer developed in [14] a theory of
deformations of the so called multifoliate structures, which are more general than the foliate
structures. Our approach in this paper for foliations of codimension 1 is different of theirs
(see Remark 14) and allows us to study the Levi flat case.

In the second chapter we give a description of the deformations of a smooth Levi flat
hypersurface L in a complex manifold by means of the Maurer-Cartan equation in the
DGLA associated to the Levi foliation.
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DEFORMATIONS OF LEVI FLATS 283

Then we establish the equations verified by the tangent to a regular familly of Levi flat de-
formations. We say that L is infinitesimally rigid (respectively strongly infinitesimally rigid) if
the tangent cone at the origin to the moduli space of Levi flat deformations of L is trivial (re-
spectively if the tangent cone at the origin to the solutions of the Maurer-Cartan equation in
the DGLA associated to the Levi foliation is trivial) . We remark that Diederich and Ohsawa
study in [5] the displacement rigidity of Levi flat hypersurfaces in disc bundle over compact
Riemann surfaces. The definition of rigidity in [5] means that any small C? perturbation of
a Levi flat hypersurface L is CR isomorphic with L, so L is strongly infinitesimally rigid.

We prove that a transversally parallelizable compact Levi flat hypersurface in a compact
complex manifold is strongly infinitesimally rigid and we give a sufficient condition for
infinitesimal rigidity in K&hler manifolds (Theorem 3). As an application, we prove that there
are no compact transversally parallelizable Levi flat hypersurfaces in connected complex
manifolds M such that for every p # ¢ € M and every real hyperplane H, in T,M there
exists a holomorphic vector field Y on M such thatY (p) = 0and Y (q) @ H, = T,M. If
M = CP,, n > 2, the hypotheses of the previous result are fulfilled.

The non existence of transversally parallelizable Levi flat hypersurfaces in CPs can be
obtained by different proofs. We chose here to give a proof by using the results of this paper.
Another direct proof was furnished to the authors by Marco Brunella [2] who disappeared
recently in a tragic accident. We want to pay tribute to the memory of Marco Brunella by
giving also his proof of this result.

2. Deformation theory of integrable distribution of codimension 1

2.1. DGLA associated to an integrable distribution of codimension 1

DEFINITION 1. — A differential graded Lie algebra (DGLA) is a triple (V*,d, [-,-]) such
that:

1) V* = ®ienV?, where (V?),_ is a family of C-vector spaces and d : V* — V*isa
graded homomorphism such that d> = 0. An element a € V* is said to be homogeneous of
degree k = dega.

2) [-,]] : V* x V* — V* defines a structure of graded Lie algebra i.e., for homogeneous
elements we have
(2.1) [a,b] = — (—1)%8 @48 [p, ]
and
2.2) la, [b, c]] = [la,b] ] + (=1)*E """ [b, [a, ]].

3) d is compatible with the graded Lie algebra structure i.e.,
(2.3) da,b] = [da,b] + (—1)** [a, db] .

REMARK 1. — If (2.1) is satisfied then (2.2) is equivalent to
(2.4) S, (—1)* 8“4 [q, [b,d]] = 0

where & denotes the symmetric sum.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



284 P. DE BARTOLOMEIS AND A. JORDAN

DEFINITION 2. — Let (V*,d,[,"]) be a DGLA and a € V1. We say that a verifies the
Maurer-Cartan equation in (V*,d, [-,]) if

(2.5) da + % [a,a] = 0.

LEMMA 1. — Let (V*,d,]-,-]) bea DGLA and a € V. Set d, = d + [a,-]. Then for every
w € V* we have

1
d2w = [da—}-Q[a,a],w] .

Proof. — Letw € V*. Since d satisfies (2.3) we have
B = (d+ [0, ]) (do + [a,0]) = d[a,0] + [0, d] + [a, [0, ]
= [da,w] — [a,dw] + [a, dw] + [a, [a,w]]
= [da,w] + [a, [a,w]] .
But (2.2) gives

[[a, a] ]

N =

[a7 [av w]] =
and the lemma follows. O

From Lemma 1 we obtain the following

COROLLARY 1. — Let (V*,d,[,-]) be a DGLA and a € V! verifying the Maurer-
Cartan equation (2.5). Then d> = 0. Moreover, if Z(V*) = {0}, where Z(V*) =
{BeV*: [B,a] =0, Va € V*} is the center of (V*,d, [-,]), then a verifies Maurer-Cartan
equation (2.5) if and only if d2 = 0.

The starting point of the theory developed in this section is the following:

LEMMA 2. — Let L be a C* manifold and let X be a vector field on L. We denote by A* (L)
the k-forms on L and A* (L) = ®kenA* (L). For o, B € A* (L), set
(2.6) {a,8} = LxanNB—anLxp
where £x is the Lie derivative. Then (A* (L) ,d,{-,-}) is a DGLA.

Proof. — Since (2.1) is obvious we will verify (2.4). We have
63 (_1)deg;adeg0{a7 {b, C}} _ 65 (_1)degadegc(fxa/\ be/\C
— LxaAbA Lxc—alLxbAc+aAbA L)

Since
(—1)d8cdeEa p g A PxbAc=(—1)18"9B LybACA Pxa
and
(—l)deg“degc a Z’?{b ANec= (—l)degbdegc chaAl Z’ib,
it follows that
S, (—1)8 48 {4 {b,c}} = 0.
By using Cartan’s formula
Px =i1xd+dix
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DEFORMATIONS OF LEVI FLATS 285

we obtain
d{a,b} =d((txd+dix)aNb—aA (txd+dix)b)
=dixda Ab+ (—1)"%% xda A db+ (—1)*“ duxa A db
—daAuxdb—daAdixb— (—1)%a A duxdb
= {da,b} + (—1)*8* {a, db} . O

LEMMA 3. — Let L be a C* manifold and ¢ C T (L) a distribution of codimension 1. Let
v € AL (L) such that ker vy = & and let X be a vector field on L such that v (X) = 1. Then the
following are equivalent:

1) € is integrable;

ii) There exists a € A (L) such that dy = o Ay,

i) dy Ay =0,

) dy=—txdyANvy;

V) v satisfies the Maurer-Cartan equation (2.5) in (A* (L) ,d,{-,-}), where {-,-} is defined
in (2.6).

Proof. — ii) = iii) and iv) = ii) are evident.
iil) = iv). Suppose

dyNy=0.
Since
tx (@nb)=1xaANb+ (—1)deg(a) aAuxb, a,be A" (L),
we have
0=1x (dy A7) =1x (dy) Ay + (exy)dy = tx (dy) Ay +dv,
and so

dy = —ux (dy) Ay
iv) & v). Since txy = 1 we have
V.7 = Lxy Ay =y A Lxy=1xdy Ay —y Aixdy = 2uxdy Ay
SO
dv+%{%7} =dy+ixdy Ay

As 1) & i) is the theorem of Frobenius, the lemma is proved. O
By Lemma 2, Lemma 3 and Corollary 1 we obtain

COROLLARY 2. — Let L be a C* manifold and & C T (L) an integrable distribution of
codimension 1. Let v € A' (L) such that kery = ¢ and let X be a vector field on L such that
v (X) = 1. Set

S=dy=d+ {7,
where {-, -} is defined in (2.6). Then (A* (L), 6,{-,-}) isa DGLA.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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REMARK 2. — Let Z (A* (L)) be the center of (A* (L) ,0,{-,-}). Then Z (A* (L)) = {0}.
Indeed, let « € Z (A* (L)). Since {a,1} = Lxa it follows that £xo = 0. Let x € L and
choose local coordinates (x4, . .., x,) in a neighborhood U of © such that X = 6%1 onU. Let
B € A° (L) such that 3 = x; in a neighborhood of x. Then

{o,B}(X) = (LxaAf—arLxf)(X)=-a(X)=0
and so o = 0.
COROLLARY 3. — Under the hypothesis of Corollary 2, we set
Z*(L)={a€e AN (L): txa=0}.
Then (Z* (L),8,{-,-}) is a sub-DGLA of (A* (L), 6,{-,-}).
Proof. — Leta, B € Z* (L). Since txa =0, tx( =0and 1% = 0 we have
txba=1x (da+ixdyNa—vyAixda) =txda —txda =0
and
ix {8} = ix (LxaAB—anLxB)=1xLxanB—(—1)"F"anix Lxp
=1x (ixd+dix)aAf— (1) a Ay (txd +dix) f = 0. O
REMARK 3. — Let L be a C* manifold and ¢ C T (L) an integrable distribution of

codimension 1. Then there exists a 1-form ~ on L such that § = ker ~y if and only if £ is co-
orientable, i.e., the normal space to the foliation defined by & is orientable (see for ex. [7]).

DEFINITION 3. — Let L be a C® manifold and ¢ C T (L) an integrable co-orientable
distribution of codimension 1. A couple (v, X) where v € A* (L) and X is a vector field on L
such that ker v = £ and vy (X) = 1 will be called a DGLA defining couple.

REMARK 4. — Let L be a C* manifold and ¢ C T (L) an integrable distribution of
codimension 1. Let (v,X) be a DGLA defining couple for an integrable distribution £ of
codimension 1. Then (v',X') is a DGLA defining couple for € if and only if ¥/ = e,
ANEC®(M)and X' = e *X +V,V € & Compare with the contact distribution case:
the existence of a contact form w on an odd dimensional manifold is equivalent with the co-
orientability of the contact distribution [10] and it is unique up to a multiplication with a
nonvanishing function. In this case the Reeb vector field R is uniquely defined by Lrw = 1 and
trdw = 0. But contact distributions are nonintegrable.

REMARK 5. — Let o, 3 € Z* (L) and let (v, X) be a DGLA defining couple. Then
2.7) {a,8} = (txd+dix)aANB—aA(xd+dix)B=txdaNB—aAixdB
and
(2.8) {7,a} = (xd+dix)yNa—yA(txd+dix)a=1xdyANa—vyAixda.

DEFRINITION 4. — Let (V*,dv,[,],), (W*,dw,[-,|y) be DGLA and ® : V* — W* a
graded morphism. We say that ® is a DGVS-morphism (differential graded vector space mor-
phism) if ®dy =dw® A DGVS-morphism & is a DGLA-morphism if
(@ (a),®(B)]yy = @ ([, B]y) for every o, 3 € V*.
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REMARK 6. — The DGLA structure of Z* (L) depends on the choice of the DGLA defining
couple (v, X). In what follows, for given & we will fix -y and X. When it is necessary to emphasize

this dependence we will write (Z:,X (L),6+,x,9{ '}V,X)'
The following proposition will describe shortly the effects of changing the defining couple:

PROPOSITION 1. — Let L be a C* manifold and ¢ C T (L) an integrable distribution
of codimension 1. Let (v,X) be a DGLA defining couple, V a &-valued vector field and
A € C®(L). For a € Z*(L) consider ¥ (o) = ¥y (a) = era and © () = Oy (a) =
o+ (=1)%E% ., Ay. Then:

1) v o ( j;,X (L) 75’7,Xa {'7 '}7,X> - <Z:*'y,e**X (L) ) 6(3)\7,6_)‘)(7 {'a '}e*'y,e*AX) is a
DGLA-isomorphism.
i) ©: (2% x (L),6y,x) = (23 x4v (L), 6y x4v) is a DGVS-isomorphism.

Proof. — i) Let o, B € Z7, x (L). By (2.7) and (2.8) we have
2.9) Vo, xa = e (da + {v, oz}%X) = e (da + txdy Ao — 4 A xda)
and
{eky, e)‘a}ek%e,%X = Le-rxd (ek'y) Aera —erMy A t-rxd (eka)
=1x (eAd)\ Ay + eAdfy) ANa—vAitxd (e)‘oz)
=eMix (ANyAa—dAAa+ix (dY) Aa—y A (XA Q)
—ix (AN YA a—v Axda]
(2.10) =eM—dAAa+ix (dy) Aa—vAixda).
By replacing (2.10) in the formula
Seryerx¥a =d(era) + {7, e’\a}ew’e_kx ,

we deduce from (2.9) that
\IJ(S’Y’X = 66*7,6**){‘11'

We have also
{Pa, ¥ (B)}oryerx = {e’\a,e)‘ﬂ}ekme,xx = tlo-axd (e’\a) ANerB—eraAt-rxd (e’\ﬁ)
=eMix (dAANa+da)AB—aAix (dXA B+ dB)]
=eMix (AN aAB+ixdaAB—ix (dA)a A B —aAixdf]
=eMixdaAB—aAixdf] = ¥{a,B}, x -
i) Let « € Z7, y (L). Then

deg

Lva/\7>
tx (tva Ay) + (—1)
=wa+ (1) ixipa Ay — ya =0.

It follows that © is well defined and the map ©" : Z7 v .y (L) — Z7 x (L) defined by
0’ () = a+ (—1)%8* ,_ya A v is the inverse of ©.

tx+vOa =txyv (a + (1)

deg deg o

=wa+(—1) v (bya A7)
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288 P. DE BARTOLOMEIS AND A. JORDAN

Since tyy = 0 and dy = —txdy A+, by using the expression of ¢, x from (2.9), we obtain

Od,y xa =0y xo — (—1)dega v (da+txdy Ao — v Avxda) Ay
=6, xa— (=1)%B yyda Ay — (=1)%B* (Lyuxdy) Ao Ay
+ (=18 xdy A tya Ay
(2.11) =0y, xa—vAvyda— (=) (Lyixdy) Aa Ay +dy Ao

We have

{7, a+ (-1)%F% ipa A ’Y} Ly = Lxvdy A (a + (1) pa A fy)

v, X+
—yAuixivd (oz + (=1)%EYa /\7)
=ixdyAa+ (=1 ixdy Awa Ay

deg o

+iwydyANa+(-1) tydy Atya Ay

1)y A uxd (Lya A )

—yAixda — (—
— vy Awda— (1) y A wyd (Lya A7)
and
d (a + (=1 iy A 7) =da+ (-1)*F* diya Ay — tya A dy.
So

0y, x+vOa =da+ (=) doya Ay — 1y A dy

dege cdy Awya Ay + wydy Ao

+eixdyAa+(—1)
+ (=) ydy Arya Ay —y Avxda — (1) ¥y A uxd (bya A )
(2.12) —yAwda— (1) y Awyd (Lya A7).
Since
YA ixd(tyaAy) =7 ALx (dLva A+ (=1%o A dv)
= (=1)%*E*y Adiya+ v Aya A vxdy
= (D)% (Y Adwya — tya Ady)
and
YA wd(yaAy) = Ay (dLVa Ay + (=1)%B L La A d’y)
=yAiyaAydy,
(2.12) gives
0y x+vOa =6y xa + (—1)dega diva Ay —ya Ady

+ (—l)dega txdy ANya Ay + ydy Ao
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DEFORMATIONS OF LEVI FLATS 289

+ (=) sydy Avya Ay —y Adeya + tya A dy
— v Avyda — (1)

(2.13) =y xo+dyANiwyo+ydy Ao —v Awydo.

YAty Atydy

Finally, from (2.11) and (2.13) it follows that
0y, x4+vOa — 0, xa = ydy N o+ (—l)dega (byexdy)a Ny
= —uy (bxdy AY) Aa+ (=) Lyixdy) a Ay

= —y (bxdy)yAa+ (—l)dega (

wixdy)a Ay =0. O

2.2. Moduli space of deformations of integrable distributions of codimension 1

Let L be a C* manifold and £ < T (L) an integrable co-orientable distribution of
codimension 1. We fix a DGLA defining couple (v,X) and we consider the DGLA
(Z*(L),6,{-,}) previously defined.

LEMMA 4. — Let o € Z* (L). The following are equivalent:
i) The distribution £, = ker (v + «) is integrable.
il) a satisfies the Maurer-Cartan equation (2.5) in (Z* (L),6,{-,-}).

Proof. — By Lemma 3 the distribution ker (v + «) is integrable if and only if v+« satisfies
(2.5)in (A* (L),d,{-,-})- Since ~ satisfies (2.5) we have

1 1
d(y+a)+ s {y+ay+ap=dat{y,a}+5{aa}

=da+ % {a,a}
and the lemma follows. O
NOTATION 1. —
1
M (L) = {a € 7' (L): da+ §{a,a} = O}.
Following [14] we define:

DEFINITION 5. — By a differentiable family of deformations of an integrable distribution &
we mean a differentiable family w : D = (&),c; — t € I =] —a,a[, a > 0, of integrable
distributions such that £, = w=' (0) = &. By a differentiable family of small deformations of
an integrable distribution & we mean the restriction D |I. = w=1 (I.) of a differentiable family
ofw: D — I. =] — ¢,¢[ of deformations of ¢ = w1 (0) to a sufficiently small neighborhood
of0inI.

REMARK 7. — By Lemma 4 a differentiable family of deformations of an integrable distri-

bution is given by a differentiable family (v + o), in 7Y (L) such that & = ker(y + oy) and
Qg = 0.
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290 P. DE BARTOLOMEIS AND A. JORDAN

DEFINITION 6. — Let U be a neighborhood of the identity in the group § = Diff (L) of
diffeomorphisms of L and V' be a neighborhood of 0 in Z* (L) such that ®* (y + o) (X) # 0,
(@) (v + @) (X) # 0 for every (®,) € U x V. We define
(2.14)

(,0) € Ux V € Gx Z* (L) = Z* (L) 3 X () (a) = (& (7 +a) (X)) & (v +a) 7.

REMARK 8. — The previous definition is adapted for small deformations. If 3 = x (®) («),
Ex@)(a) = P®*&. This means that &, is integrable if and only if &y (a)(a) is integrable.
By Lemma 4 we deduce that o satisfies the Maurer-Cartan equation (2.5) in the DGLA
(Z*(L),8,{-,-}) if and only if x (®) (a) does.

REMARK 9. — We consider the right action of G on the set D of distributions of codimen-
sion 1 on L given by

(2.15) T(®)(6) =01, dc Y, €D

Denote by J the subset of D given by the coorientable integrable distributions. Since & = ker 8
if and only if T (®) (§) = ker ®* 3 it follows that J is G-invariant.

DEFINITION 7. — i) /4 is the moduli space of integrable distributions of codimension 1
on L.

i) We consider the one-to-one mapping
(2.16) ZY (L) 3 a— (y =ker (y+a) € R,

where R ={¢ € D: ( =ker(y+ ), B€ Z' (L)} C D. The moduli space of deformations
of integrable distributions of codimension 1 of € ist= (m (I NR)) /G, wherew : D — D/ I is
the canonical map.

REMARK 10. — Letv € n= (m (Y NR)) /G, v = 7 (), where ( € I NR. By Lemma 4
there exists o € MCEs (L) such that ¢ = (o = ker (7 + ). Then if ® € G is sufficiently close
to the identity we have

7(®) ((a) = B '¢a = ker ®* (v + a) = ker (y + x (®) (@) = Cy(@)(a)»

sov=m (CX@))(Q)) and the action given by (2.14) is the local description of the global action
given by (2.15) via the correspondence (2.16).

NOTATION 2. — We will denote the moduli space of deformations of integrable distributions
of codimension 1 of § by M&s (L) [~y.

REMARK 11. — Let ﬁo be the identity component of G, A* (L)' the set of nowhere vanishing
1-forms on L and A* (L)' / M) the set of cooriented distributions. Then we have the group
action

G° x AV (L) /e (E) 5 (@, kerya) — ker x (D) (a) € A (L) /er’ ()

of @° on A* (L)' /e’ ) and consider [E)JTQ,; (L)/ ﬁo] the associated transformation groupoid
(see [8] for the definition of transformation groupoids): another possibility of defining
M5 (L) [~y is to take the germ at (1dz, §).
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The moduli space of deformations of integrable distributions of codimension 1 de-
pends a priori on the DGLA defining couple. We will now prove that the moduli space
MEs., (L) /~y and mes_ (L) /~g of deformations of integrable distributions of codi-

~

mension 1 corresponding to defining couples (v, X ) and (7, X) are canonically isomorphic:

PROPOSITION 2. — Let L be a C* manifold and § C T (L) an integrable distribution
of codimension 1. Let (v,X) be a DGLA defining couple and V. # 0 a &-valued vec-
tor field on L. Let 4y = {a € Z'(L): (1+wa)(z)#0,x € L}. For a € Uy define
Fya= (1+wa) " (a— (tva)y). Then Fy : ME;, (L) Nty — MEs . (L) Ny is
an isomorphism which induces an isomorphism

Fy: MCs, (L) Ny [~y — MEs o, (L) Ny )~y

Proof. — Leta € MEs_ . (L)N4Uy. The Lemma 4 implies that Ker (y + «) is integrable.
Since

ixsvFva=1+wa) lixiv (@— (va)y) =1 +wa) ! (tva —wa) =0,

it follows that Fya € Z7 y (L). From Proposition 1 it follows that Fy is the restriction

to ME&;. (L) NUy of the DGVS-isomorphism (1 + Lvot)_l Oy, where ©y was defined in
Proposition 1. We have

(r+ Fra) = (v+ (1 +wa) (e - (wa)y)) =7 +a,

so Ker(y+a)=Ker(y+ Fya) and by using again the Lemma 4 we obtain
Fyo e IMes L).

v, X+V (

The invariance of Fy follows by Remark §. O
From Proposition 1 and Proposition 2 we obtain

COROLLARY 4. — Let L be a C* manifold and & C T (L) an integrable distribution of
codimension 1. Let (v, X), (ﬁ, )/(\') be DGLA defining couples, 7 = +e*y, X = e *X +V
with A € C*° (L) and V' a &-valued vector field. Then there exists a canonical isomorphism
F o M& (L) /~g — Mmes_ (L) /~g between the moduli space of deformations of
integrable distributions of codimension 1 of §, F = Oy o W), V) : 7 y (L) — Z5 .-»x (L),
Ov:Z5 ax (L) — ZE%)?) (L), ¥y (o) = eraand © (a) = Oy (@) = a+ (=1)*F* tya A 1.

LEMMA 5. — LetY be a vector field on L and ®Y the flow of Y. Then

dx (2))

G =8
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Proof. — We have

(@) m) ™ (@)7) @)

dx (27) _
dt =0 0) = dt |t=0
e (@)Y me
= (@) @ ( C)lt ) O
CIV K 1 d ((I)X) 1\ *
+(@)7) ) ( — ) —
(@) @) ) (@) o)
dt |t=0'y + dt |t=0
=Zy (v)(X)v — Lyv
= (deyy) (X) v+ wydy (X)y — diyy — eydy.
By Lemma 3 iv)
tydy = —uy (exdy Ay) = — (by (exdy)) v + (eyy) exdy
= —(dy(X,Y)) v+ (ey7) exdy,
SO
y
D) 0= o) ()7~ (%, X0 dor
+ (dv (X, Y))y = (ty) exdy
(2.17) = (exdeyy)y — deyy — (byy) exdy.
Since
Lxvy=dixy+ixdy=1xdy
it follows that
(2.18) Suyy = duyy + {7, tyv} = diyy + Lxy Ayy =y A Lxiyy

=duyy + (byy) exdy — X (by ) -
From (2.17) and (2.18) we obtain

dx (9))

g oo (0) = =deyn. O

DEFINITION 8. — A INE;s (L)-valued curve through the origin is a continuous mapping
A [—a,a] = MEs (L), a > 0, such that X (0) = 0. We say that o is the tangent vector at the
origin of the M (L)-valued curve X through the origin to MEs (L) if oo = }irr(g@ = %n:o‘

PROPOSITION 3. — Let a be the tangent vector at the origin of a MEs (L)-valued curve
through the origin A\, Y a vector field on L and ®" the flow of Y. Set 1 (t) = x (®)) (A (2)).
Then:

1) da = 0.
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ii) The tangent vector (B at the origin of the MEs (L)-valued curve p is
B =a—{dLyy.

Proof. — 1) By Lemma 4, X (¢) verifies the Maurer-Cartan equation for every ¢. Since
A(t) = at + o (t), we have o = 0.

i) B =2 = Ay (@ 1)y = 200 +a

The Proposition 3 follows now by Lemma 5. O
The Proposition 3 justifies the following definition:

DEFINITION 9. — The tangent cone Ty (MEs (L) /~y) at [0] to MEs (L) [~y is the
collection of cohomology classes in H' (Z (L) , 8) of the tangent vectors at 0 to M€ (L)-valued
curves.

DEFINITION 10. — We say that the deformation theory is not obstructed at [0] if

Tio) (MCs (L) /~y) = H' (Z(L),9).

REMARK 12. — In general, to establish unobstructedness of a deformation theory is a very

hard problem and conditions as the vanishing of
q:H'(Z(L),8) —» H*(Z(L),6), q(a) = {a,a},

will provide only curves of formal solutions to the Maurer-Cartan equation with prescribed
tangent vectors at 0 (see for ex. [1]).

REMARK 13. — There exists a natural isomorphism © : A* (§) — Z* (L): for a € A (€)
set ©(a)(X) = 0, 0()(Y) = oY) if Y € & and extend by linearity. Let
dy @ A* (&) — A* (&) be the differential along the leaves of £. By using this isomorphism
we consider dy : Z* (L) — Z* (L) and for every a € Z* (L) we have

(2.19) dpa = 1x (YN da) = da — v A uxda.

Indeedleto € AP (§) and X+, ..., Xpq1 € € Sincey (X;) =0,j=1,...,p+landy(X) =1,
we have

Lx (’)/ AN dOé) (Xl, e ,Xp+1) = (’)/ AN dOé) (X,Xl, .. .,Xp+1) = da (Xl, N ,Xp+1) .
LEMMA 6. — The form vxdy is dy-closed.

Proof. — From Lemma 3 i¢) we obtain
0=d(yAixdy) =dyANixdy —vyANdixdy = —y ANdixdy
s0 tx (7 Aduxdy) = 0 and the Lemma follows by (2.19). O

NOTATION 3. — The cohomology class [txdy] € H* (A* (§),dy) which depends only on &
will be denoted by c ().

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



294 P. DE BARTOLOMEIS AND A. JORDAN

LEMMA 7. — Let oo € ZP (L). Then
(2.20) da = dpa + txdy A a.

In particular

dya =da <= 1xdyANa=0.

Proof. — By (2.19) and (2.8) we have
da=da+{v,a} =da+ixdyANa—yANixda=dya+ixdy A«

and the lemma follows. O

REMARK 14. — We would like to mention that Kodaira and Spencer developed in [14] a
theory of deformations of the so called multifoliate structures, which are more general than the
foliate structures. A multifoliate structure on an orientable manifold X of dimension n is an
atlas (Ui, () ) such that the changes of coordinates verify

a=1,....,n

oz
L =0 for a,
2u7 =010

where (P, 2) is a finite partially ordered set, {a} a set of integers such that there is given a map
{a} — [a] of a onto P and the order relation” 7 is defined by o > 3 if and only if [a] > [3],
a~B if and only if [a] = [B]. An usual foliation is the particular case when # = {a,b}, a > b.

Kodaira and Spencer define in [14] subsheafs ®%,, p € N, of the sheaf of germs of jet forms
of degree p on X which are compatible with the multifoliate structure and a differential D such
that

00,320,202 ... 897 0

is a resolution of the sheaf © g of the vector fields tangent to the multifoliate structure. They
define also a Lie bracket [-,-] on jet forms such that ((&}_, ker D) (X), D, [-,"]) isa DGLA
and every small deformation of the multifoliate structure is given by a family {v (t)} C <I)1¢ (X)
verifying [v (t) ,v (¢t)] = 0 and v(0) = d. So v (t) + d verifies the Maurer-Cartan equation.

Moreover %u:o ez (‘bly,) and the class [%\t:O] € H' (X, ©y) represents the infinitesimal
)

deformation of the multifoliate structure along a tangent vector 4.

In our approach, defined only for deformation of foliations of codimension 1, the DGLA
algebra (Z* (L), 6,{-,-}) associated to a foliation on a cooriented manifold L is a subalgebra
of the algebra (A* (L), 0,{-,-}) of forms on L. Its definition depends on the choice of a DGLA
defining couple, but the cohomology class of this algebra does not depend on its choice. The
deformations are given by forms in Z* (L) verifying the Maurer-Cartan equation and the moduli
space takes into account the diffeomorphic deformations. The infinitesimal deformations along
curves are subsets of the first cohomology group of the DGLA (Z* (L), 4,{-,-}).
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2.3. Transversally parallelizable foliations

Recall the following

DEFINITION 11. — Let L be a C* manifold and ¢ C T (L) a distribution of codimension 1.
& is called transversally parallelizable if there exists a 1-form w on L such that £ = ker w and
dw = 0.

PROPOSITION 4. — Let L be a C* manifold, & C T (L) a distribution of codimension 1 and
(v,X) a DGLA defining couple. The following assertions are equivalent:

1) € is transversally parallelizable.
ii)c(&) =0.
iii) There exists A € C*° (L) such that vxd (e*y) = 0.

iv) There exists a DGLA defining couple (’y\, X ) such that 6& ¢ = dyp.
Proof. — The assertion i) = 1iii) is obvious and iii)) <= iv) by Lemma 7.

iv) = ). We may suppose that A € C* (L) such that§ = e*yand X = e *X + V,
V € &. The Lemma 7 applied to 0-forms implies

tgd (e)"y) =0
and by Lemma 3 iv) it follows that
d (e)"y) =—13d (e>"y) Aery =0.
i) = ii). Let A € C* (L) such that d (e*y) = 0. Since
d(e>‘7) =erdy+d\Ay) =€ (—ixdy Ay +dAAY) =0
it follows that

(2.21) dANy =1xdy A7y.

We have

(2.22) tx (AAA7) = (LxdX)y —dA
and

(2.23) tx (bxdy Ay) = —ixdy,
so by (2.21), (2.22) and (2.23) we obtain

(2.24) (txdA\)y —dA = —uxdy.

From (2.19) and (2.24) it follows that
dpA = dX\ — (LxdA) v = 1xdy,

soc(&) =0.
i) = 1). Let A\ € C*° (L) such that

dpA = txdy = dX — (Lxd)) 7.
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Then
d (eA*y) =eMdy+dAAy) = e (—ixdy Ay +dA A7)
=e* ((—exdy +d\) Ay) = e ((txd\)y) Ay = 0. O
EXAMPLE 1. — Let M be a compact manifold and HY, , (M) its de Rham cohomology group
of degree k. Suppose that there exist Ti,...,T, closed 1-forms on M such that their classes
[T1], ..., [1p] form a basis of H, (M) and such that [t; A7), j,k = 1,...,p, j < k, are

linearly independent in H%  (M). Let L = S* x M endowed with the product foliation given
by & = ker ds where (s, ) are variables in S* x M. The following assertions are equivalent:

)G (s,z) =al(s) Zp:cjrj (), ¢c; €R, (s,2) € L.
j=1

ii) There exists a curve T with values in MEs (L) [~y such that the tangent to T at the origin

is [B].
In particular Ty} (MEs (L) /~g) = C> (S*) x Hpg (M) /R* where the action of R* is
given by X (a,h) = (Aa, \"'h).

Proof. — We consider the DGLA defining couple (v, X) = (ds, 2).
p
i) = ii). Let B(s,2) = a(s) Y c;7; (x). Take oy = PBt. Then oy € Z' (L) and
j=1

0B =dpB=d.8=0.
Moreover

p p p
{B,8} =2uxdB NP = ZL% (a’ds A chTj + achde) A achTj =0.
j=1 j=1 =1

So a; € ME;s (L) and we can consider I' : t — [oy] € ME; (L) /~g.
i) = i). Let a; = t8 + %0 + o (t?) € ME; (L). Then
{ag, ay =t*{B,8} + o (t2)
and
day = dpay = td. B+ t?d.o + o (t2) .
Since oy € ME; (L), we obtain d,B3 = 0 and {B, 8} + 2d,0 = 0,50 [8] € H}r (M) and

[{8,8}] =0€ Hpp (M).
Since ¢ 2 B = 0 we have

B (s,x) = Zﬁj ()75 +dof (s,2), f€C™(L).

By Proposition 3 we may suppose 3 (s,z) = > f; (s) 7; (z). Then

.
it

p
g =" Bjds A

j=1
and

p p
{8, =200dBAB=2 (Zﬁ;‘Tj) A (Zﬁm) =2 BBk AT
j=1

=1 ik
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But
(8,6} =2 _ (8;6x — Bi;) [rj A el = 0 € Hpyp (M)
j<k
and from the assumption of linear independence it follows that ﬁ; Bk — B;,B; = 0 for every
1 < j < k < p. This means that 3; = cja,¢; € R,a € C*® (Sl) and 8 (s,z) =

a(9) L eym @), (3.2) € L. .

REMARK 15. — In the previous example we have Tio) (M€ (L) /~y) # H* (Z (L), 6) so
the deformation theory is obstructed at [0]. The hypotheses are fulfilled in the particular case
where M is a torus.

3. Deformations of Levi-flat hypersurfaces

3.1. Maurer-Cartan equation for Levi-flat deformations

Let M be a complex manifold and L a Levi flat hypersurface of class C* in M such that
the Levi foliation of M is co-orientable. In this case there exists r € C*° (M), dr # 0O on L
suchthat L = {z € M : r(2) =0} and set j : L — M the natural inclusion. As dr # 0 on
a neighborhood of L in M we will suppose in the sequel that dr # 0 on M.

We denote by J the complex structure on M. Then the distribution { = T'(L) N JT (L)
is integrable and & = ker vy, where y = j* (d$r). Since d$ = J~1dJ, we have d5r = —Jdr.

Let g be a fixed Hermitian metric on M and Z = grad,r/ ngadgrﬂz. Then the vector
field X = JZ is tangent to L and verifies

V(X)) =dor (JZ) = 1.

It follows that the couple (v, X) defined above is a DGLA defining couple for the Levi
foliation. For a given defining function, we will fix this DGLA defining couple and when its
dependence on the defining function r has to be emphasized, we will say the DGLA defining
couple associated to r.

Let U be a tubular neighborhood of L in M and 7 : U — L the projection on L along
the integral curves of Z. As we are interested in infinitesimal deformations we may suppose
U=M.

We will now parametrize the real hypersurfaces near L and diffeomorphic to L as graphs
over L:

Let ¥ =C* (L;R) and a € . Denote

Lyo={zeM: r(z)=a(r(2))}.

Since Z is transverse to L, L, is a hypersurface in M. Consider the map ®, : M — M
defined by &, (p) = ¢, where

(3.1 m(q)=m(p), r(g) =r(p)+a(r(p).

U is a tubular neighborhood of L, so &, is a diffeomorphism of M such that &, (L) = L,
and ;! =7, .
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Conversely, let U € % C @ =Diff (M), where % is a suitable neighborhood of the identity
in & as in Definition 6. Then there exists a € & such that ¥ (L) = L,. Indeed, for z € L, let
g (z) € ¥ (L) such that 7 (¢ (z)) = «. By defining a (z) = r (¢ (z)), we obtain ¥ (L) = L,.

So we have the following:

LEmMMA 8. — Let U € U. Then there exists a unique a € & such that ¥ (L) = L.

It follows that a neighborhood ¥4 of 0 in & is a set of parametrization of hypersurfaces
close to L.

For a € Vg, consider the almost complex structure J, = (®,'), o J o (®,), on M and
denote

(3.2) ag = (d5,7 (X))~ 5 (d5,r) — 7.
Then o, € Z' (L) and
(3.3) ker (v + a,) = ker j* (dCJar) =TLNJ,TL.

LetVeTLNJ,TL. ThenV =Y + 60X withY € TL N JTL and 0 a real function on L.
By (3.3) we have
5.7 (V) =j"d5,r(Y)+65dj,r(X) =0,
SO
6=~ (d5,r (X)) d5,r (V) = —au (V)
and it follows that
(3.4) TLNJ,TL={Y — (aq (Y))X : Y € TLNJTL}.

Since
(3.5)
T (TLa N JTLg) = (®;"), (TLeNJTL,) =TLN (®;"), (J (®4), TL) =TLNJ,TL

from (3.3), (3.4) and (3.5) we obtain the following
LEMMA 9. — For every a € Vg the form o, is the unique form in Z* (L) verifying
ker (v + aq) =m (TL,NJTL,).
Moreover,
ker (v + aq) = ker j* (d5.r) = m (TLa N JTL,) =TLN J,TL
={Y —(a,(Y))JZ: YeTLNJTL}.
By using Lemma 9 and Lemma 4 we can state the following

COROLLARY 5. — For every a € Vg, the following assertions are equivalent:
1) L, is Levi flat.
il) aq satisfies the Maurer-Cartan equation in (Z* (L) ,6,{-,-}) i.e.,

(3.6) dag + % {aq,a,} =0.

REMARK 16. — Suppose now that a,b € Vg, ® € § = Diff (L) and x (®) (ag) = au,
where x (®) is the group action defined in (2.14). From Lemma 9 and Remark 8 it follows that
L, is Levi flat if and only if Ly, is Levi flat.
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NoOTATION 4. — Set 6={a,: a € Vgl

REMARK 17. — & parametrizes the codimension 1 distributions close to TL N JT L which
are of the form TL N JTL for J complex structure (possible non integrable) close to J, where
J=I+8)J(I+S) " withS e AS" (M) ® T (M) close to 0.

By using the notations of Definition 7 , we are now able to put in evidence the moduli
space of deformations of Levi-flat manifolds of L:

DEFINITION 12. — Let Rg = {( € D: {( =ker(y+B), B € &}. The moduli space of
deformations of Levi-flat manifolds of L is 7= ( (4 NRg)) /G.

REMARK 18. — From Remark 10 it follows that the corresponding local action of G
on & is given by ap, = x (®) (), where a,b € Vg and ® € G is sufficiently close to the
identity. If r, v’ € C* (M), dr # 0,dr’ # 0on L suchthat L = {z€ M : r(z) =0} =
{zeM: 71" (2)=0}, r = hr' with h > 0 of class C* in a neighborhood L. So
{zeM:r(z)=a(r(2))} = {ze€M: 1 (2)=h""(2)a(r(2))}. It follows that the
previous definition does not depend on the choice of the defining function r of L and by Proposi-
tion 1 it follows that it does not depend on the choice of the metric g either. We remark also that
the moduli space of deformations of Levi-flat manifolds of L identifies Levi flat hypersurfaces
up to a foliated diffeomorphism and not up to a CR diffeomorphism.

3.2. Equations for infinitesimal Levi-flat deformations

Let M be a complex manifold, J the complex structure on M, L a Levi flat hypersurface
in M and I an open interval in R containing the origin. A 1-dimensional Levi-flat defor-
mation of L is a smooth mapping ¥ : I x M — M such that ¥, = ¥ (¢,-) € Diff (M),
L; = W.L is a Levi flat hypersurface in M for everyt € I and Ly, = L. By the previous
subsection there exists a family (a¢),; in ¥ such that 7, ('L, N JT L,,) = ker (7 + aq,)
and «,, satisfies the Maurer-Cartan equation (3.6) in (Z* (L), 4, {-,-}) for every ¢t. We will
say that the family (a),.; is a family in 9/ defining a Levi-flat deformation of L.

We define now 6¢ : Z* (L) — Z* (L): fora € Z¥ (L) and V4, ..., V41 € T(L)NJT (L)
set 8 (Vay ..oy V1) = J18Ja (Vi, ..., Vpy1) and 6°a (X, V4, ..., V,) = 0. By extending
this definition by linearity we obtain 6°a € 2P (L).

Recall that (v, X) is a DGLA defining couple, where v = j* (d5r) and X = JZ =
J (gradgr / ngadgr||2), r is a defining function for L and g a Hermitian metric on M.

PROPOSITION 5. — Let L be a Levi flat hypersurface in a complex manifold M, (a;)

a family in V g defining a Levi-flat deformation of L and p = %n:o .Then

tel

dayg,
dt |t=0

C

= 6.
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Proof. — Since ag, (X) = 0 for every ¢ it follows that

dag,

3.7
37 dt |t=0

(X) =0=(6) (X).

Let V be a section of T'L N JT'L, which will be identified for simplicity with j, V. Then (3.2)

gives
Lo =% ((@r0) )5 (@5, )

+ (a5, (JZ))_l 4 g (d5.,7) (V).

dt =0
But
5 (d5,,7) (V) = 5* (d@5m) (V) =0
and
c -1 c -1
(d5,,7 () = (@r )™ =1,
SO
daat . d . . _ d
o V= g (d5,,7) () = g (et (V)
d
(3.8) = — (dr) @ 1o (Jo,V).
We have
< (J. V)—i (1), 0 J 0 (D,,),) (V)
dt |t=0 o o dt |t=0 at /x at ) x
_4d —1 d
39 = G LUV T (@) (V).

By using the definition (3.1) of ®,, we have
r(@a, (2)) =7 (2) + ar (7 (2)) = 7 (2) +tp (7 (2)) + 0 (),
where 7 is the projection along the integral curves of Z. It follows that

d (q)at )*
dt  |t=0

(3.10) —(pom)Z.

If we consider a smooth extension p of p to M and the flow ®7Z of pZ, we have

d‘fh (=) = 52) (977 ()

and restricting to L, by (3.10) we obtain

(3.11) = =pZ.
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So (3.9) and (3.11) give
d d
dt =0 (Ja V) = dt =0
= —fpz (JV)+ prz (V)
= —[pZ,JV]+ J[pZ,V]

(277) I+ J%u:o (@;’Z)* (V)

Replacing this formula in (3.8) we obtain

o0 (V) = = (@) (p[Z.IV)+ IV () Z+pT (Z.V] =V () I2).

Since dr (JZ) = 0 and dr (Z) = 1 it follows that

g0 (V) = (@) (12, V]) = IV (0) = p (dr) T Z,V)
(3.12) =pdr ([2,JV]) = JV (p) +p(d°r)[Z,V].
By using

0= ddr (Z,JV) = Z (dr (JV)) = JV (dr (Z)) — dr |2, JV]
we obtain

dr(Z,JV] =0

and (3.12) becomes
a13) o0 (V) = =IV (0) % (&) (Z,V].

Since d°r (V) = —dr (JV) = 0and d°r (Z) = —dr (JZ) = 0, it follows that
dd°r (Z,V) = Z (d°r (V) =V (dr (2)) = d°r ([Z,V]) = =d°r ([Z,V])
and from (3.13) we deduce

(3.14) i aq, (V)= —=JV (p) —pdd°r (Z,V) =dp (V) — pJ (tyzdd°r) (V).

dt |t=0
Now
(3.15) (0°p) (V) = =0p (JV) =d°p(V) — {7,p} (JV)
and
(3.16) {v,p} (JV) =pLxy (JV) = (Lxp)7 (JV).
Since v (JV) = 0 and ¢txy = 1, (3.16) becomes
(3.17) {7, p} (JV) = pexdy (JV).

Therefore, recalling now that v = j* (d°r) and X = JZ, from (3.17) we obtain
{v,p} (JV) = p(szdd°r) (JV)

and from (3.15) it follows that

(3.18) (0°p) (V) =d°p (V) — p (1yzddr) (JV).
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Finally, by (3.14), (3.18) and (3.7) we conclude

do
3.19 9t =0. O
(3.19) dt o p

NOTATION 5. — For a DGLA defining couple (v, X) we denote b = vxd~y. By Lemma 6,
b is dp-closed and ¢ (T (L) N JT (L)) = [b] € H' (A* (€),dp). Let F be a compact leaf of the
Levi foliation. Then there exists a unique harmonic form bp € A (F) with respect to the fixed
metric g such that [bjp | = [bp] € H' (F,dy), where b is the restriction of b to F.

COROLLARY 6. — Let L be a Levi flat hypersurface in a complex manifold M, (a)
a family in Vo defining a Levi-flat deformation of L and p = 9 Then:

dt |t=0"
(3.20) 00°p=10

tel

or equivalently

(3.21) dpdip — dpp A Jb — dygp A b — pJdib — pb A Jb = 0.
Proof. — a, verifies the Maurer-Cartan equation (3.6) in (Z* (L), 4, {-,-}) so
1
5aat + 5 {Oda“ aat} =0

for every t. Since
d
%M:O {aau aat} =0,
(3.20) follows from (3.19).

By (2.20) we have
§°p=—Jép = —J (dpp + ptxdy) = dyp — pJb

and
66°p = 6 (dyp — pJb) = dy (dyp — pJb) + b A (dyp — pJb)
= dypdSp — dyp A Jb — pdyJb — dSp A b — pb A Jb.
So (3.20) is equivalent to (3.21). O

PROPOSITION 6. — Let M be a complex manifold and L a C* Levi flat hypersurface in M.
Let F be a compact leaf of the Levi foliation. Then there exists a defining function p of L such

that the DGLA defining couple (‘y\, X ) associated to p verifies
(322) bF = Lgdfﬂp =l (dbdgp)‘F .

Proof. — Let r be a C™ defining function for L and (y, X) the DGLA defining couple
associated to .
Since [bjr | = [bF] € H' (F,d,), there exists A € C*° (F) such that

bp = b|F + dp .
By using (2.19) we obtain
(3.23) bp = txdpdyrip +dX — (1xdA) 7 (d°) | -

We choose a smooth extension of A\ on M which we denote by A too, and set p = e~ *r.
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We have
d® (e™*r) = e™ (d°r — rd°\)
and
(3.29) dd® (e7*r) = e * (—dA Ad°r + rd\ A d°X\ + dd°r — dr A d°X — rdd°)) .

Let V be a section of TL N JTL. Sincer = 0 on L, j*d°r (X) = 1 and j*d°r (V) = 0,
from (3.24) we obtain

Leaxdd® (e777) (V) = dd® (e*r) ()X, V)
=e* ((=dAAd°r) (*X,V)) + dd°r (e*X,V)
—dr NN ((*X,V))
= ((=dA N d°7) (X, V) + terxddr (V)
(3.25) = (d\ (V) + terxdder (V).
But (3.23) and (3.25) give
Lerxdd® (e7r) (V) =bp (V) on F

and this equality proves (3.22). O
PROPOSITION 7. — Let L be a Levi flat hypersurface in a Kéhler manifold M, (a;),c;

a family in Vg defining a Levi-flat deformation of L and p = %u:o‘ Let F be a compact

leaf of the Levi foliation and 0y, Oy the tangential operators along the leaves. Then

(3.26) dpdip —dpp AN Jbp —dip ANbp —pbp A Jbp =0

or equivalently

(3.27) 0v0up + Oyp A Op — Opp AOp — pOp AOp =0

where )
Op = by = 5 (br —iJbr).

Proof. — We choose a defining function of L as in Proposition 6. We consider on F' the
metric induced by the Kéhler metric of M. Since bp is a harmonic form on F' with respect
to this Kéhler metric, it follows that Jbp is also a harmonic form. So dyJbp = dfJbp = 0
and (3.26), (3.27) follow from (3.21). O

3.3. A uniqueness theorem for partial differential equations

In this section we prove a uniqueness theorem for second order partial differential equa-
tions on compact Kahler manifolds which will be used in the next sections to give infinitesi-
mal rigidity results for Levi flat hypersurfaces.

For ¢, € A* (M), we use the notations

(o, ¥) = o Axtp, ((p,9)) = /M (0, 9), el = (e o)), llell?, = sup * (@, 9),

where * is the Hodge operator. If T € End (A* M), we denote T¢ = J~1TJ, where J is the
complex structure of M.
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THEOREM 1. — Let M be a compact Kéihler manifold and 3 # 0 a harmonic 1-form on M.
Let A € End(A*M) defined by Ao = B ANaand P = d+ A . Suppose that A — A*A is
positive defined on a subspace E C A° M, where A is the Laplace operator on M. Then f = 0
is the unique solution of the equation PP¢f = 0, f € E. In particular A — A* A is positive
defined if ||,6||iO < AL, where N\ is the smallest strictly positive eigenvalue of the Dirichlet
Jorm f— ((Af, [)) and the conclusion of the theorem is valid in this case.

Proof. — Let f € E such that
(3.28) PP°f=dP°f+BAP°f=0.

Let w be the Kihler form on M and A : AF¥*2M — AFM the adjoint of the exterior
multiplication by w, Aa = 7! (w A x@). Then (3.28) gives

(3.29) AdP°f = —-AN(BAPf)=—{(w,BAP°f).
Step 1. — We have
(3.30) (w,BAPf) =(JB,P°f).

Indeed, let (01,...,0,,J61,...,J0,) be a local orthonormal basis at z for A! (M) such
that w (z) = Y d#; A dJ6. Then by writing 3 = Y a;df; + > b;dJ0;, P°f = 3 c;df; +
j J J J

j
>-d;dJé;, we have
J

(w, BAPfY(2) = Y (a5d; = byey) (2) AV = (JB, P°f) (2).
J
Step 2. — Let B = d° — P°. Then (Ad + B*) P°f = 0.
We will compute B* on A° (M): let p € A° (M) 3 € A (M). Since Ba = —J 'AJa =
—J7 18 A Jo, we have

(3.31) (B, ) = /M B Awp = ({9, B*)) = /Mw* By

and it follows that
B*p = (JBA*Y), € AL (M).
In particular B*P¢f = x (JB A *xP¢f) = = (JB, P¢f) and from (3.29) and (3.30) we obtain

(3.32) (Ad+ B*) P°f = 0.
Step 3. — (P¢)* Pef = 0 where (P°)* = — % P°x.
We have

(333) (P)* = —x(d°— B)x = (d°)" + B* = (d° — B)" + 2B* = (P°)" + 2B".
Since M is Kahler, by using (3.33) we have
[d,A] = — (d°)" = — (P9)* + B*
SO
(P)* P°f = (= [d,A] + B*) P°f = (Ad + B*) P°f.
From (3.32) we conclude that
(3.34) (PY* Pef=o0.
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Step 4. — ||df|| = || £B-
By (3.33) and (3.34) we have

(335) (((PY* L £)) = ((((P)" +2B") PF.£)) = [ PFI + 2((P°£, Bf)) = 0.
But

(3.36) = ((=Pf, fB)) = (= (d+ A) £, Af)) = — ({df, Af)) — | Af|?
and
_ _1 2 g L[ g2 _

63 (A = [ farnss=g [ aPtnas=—3 [ Faes) o
because 8 is harmonic and

ld (+B)|| = [|d*B]| = 0.
From (3.35), (3.36) and (3.37) it follows that
(3.38) Pl — 2 [|Af]|* = 0.

But

IPfI* = PFIP = ((d+ A) £, (d+ A) £)) = lldf|* + | AfII?
and by replacing this expression of || P¢f||* in (3.38) we complete the proof of step 4.
Step 5. — f = 0 and the case sup * (8, 8) < AX.
M

Since
ldfI” = ((df, df)) = ((d*df, £)) = ((AF, 1))
and
17817 = I AfI* = ((A*Af, f))
by the step 4 it follows that
((A=A"A) f,f)) =0
which implies f = 0.
Finally, as in the computation (3.31) of B* we obtain
A =% (B,9), ¥ € A1 (M)
and so
A*Af =xf(B,8).

In particular
(((A=AA) £, ) = (AL, ) = (=f(8,8), f)) = (AZ — sup <ﬁ,ﬂ>> 1%

Soif |8 ||(2)O < AL, the operator A — A* A is positive definite and the theorem is proved. [
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3.4. Infinitesimal rigidity results for Levi flat hypersurfaces

By using Corollary 3 and Corollary 5 it is natural to give the following definition:

DEFRINITION 13. — Let L be a Levi flat hypersurface in a complex manifold M. We say that
L is infinitesimally rigid (respectively strongly infinitesimally rigid), if for any family (at),c;
in Vg defining a Levi-flat deformation of L

[daat
dt |t=0

]=0€H%2@L®,

respectively
dog,
dt |t=0

THEOREM 2. — Let M be a smooth complex manifold and L a compact connected transver-
sally parallelizable compact Levi flat hypersurface in M. Then L is strongly infinitesimally rigid.

Proof. — Since L is transversally parallelizable, every leaf of the Levi foliation is com-
pact or every leaf of the Levi foliation is dense (see for example [7] for the properties of
transversally parallelizable manifolds). By Proposition 4 we can consider a DGLA defining
couple (v, X) such that b =¢xdy = 0 and § = dp.

Let (at),; be a family in 97 defining a Levi-flat deformation of L and p = %u:o . Then
(3.21) becomes

(3.39) dydSp = 0.

Suppose that every leaf of the Levi foliation of L is compact. By (3.39) it follows that p is
constant on each leaf, so §°p = 0. By Proposition 5 it follows that L is strongly infinitesimally
rigid.

Suppose now that every leaf of the Levi foliation is dense. Let zo € L such that
p(z0) = supp and let L., be the leaf of the Levi foliation through z,. By (3.39) it fol-

L

lows that p is constant on L, . Since L., is dense, p is constant on L and L is strongly
infinitesimally rigid. O

Now we study the case of infinitesimal rigidity of general Levi flat hypersurfaces in smooth
compact connected Kéhler manifolds.

LemMma 10. — Let M be an n-dimensional Kdihler manifold, L a Levi flat hypersurface in
M and F' a compact leaf of the Levi foliation. Let (at),.; a family in Vg defining a Levi-flat

deformation of L and p = %lt:o. Then

/ pbp AJbp Aw" 2 =0
F

where w is a Kihler form on M and J the complex structure of M.
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Proof. — From (3.27) it follows that
/ 61,5[,])/\(4}77'_2 —|—/ abp/\gp Aw" 2 — / 5bp/\ Or N w2 - / p@p ANOfp Aw" ™2 =0.
F F F F

Since 9,0F = 0,0 = 0, we have

/ OOpp ANw" 2 = / dy, (gbp/\wnfz) =0,

F F

/ OMpAOp Aw" 2 = / O (pr) ANw" 2 = / dy (pfr A" %) =0,
F F F

/ gbp ANOp A w2 = / 5(, (p@p) Aw" 2= / dp (p@F A wniQ) =0,
F F F
and the lemma is proved. O

THEOREM 3. — Let M be an n-dimensional Kdihler manifold, J the complex structure of
M, w a Kdihler form on M and L a Levi flat hypersurface in M with compact leaves. Suppose
that for every leaf F of the Levi foliation such that by # 0, Ap — Tr is positive definite
on B, where Ap is the Laplace operator on F, Tp € End (AO (F)) is the operator defined
by Trp = *p (bp,br) and

%Fz{feC‘x’(M): /

forpAJbp Aw" 2 = o} )
F

Then L is strongly infinitesimally rigid. In particular this is true if |bp ||io < Ap for every leaf F

of L, where Xp is the smallest strictly positive eigenvalue of the Dirichlet form f — | r IV |2
restricted to B g and ||bp||i<> =sup * (bp, bp).
F

Proof. — Let (at),c; be a family in 9y defining a Levi-flat deformation of L and
p = %‘ o~ Let F' be a leaf of the Levi foliation. We recall that by (2.20) we have
da=dya+bp A a.

If bp = 0, (3.20) implies that dd°p = 0 and it follows that p is constant on F.

Suppose now that by # 0. By (3.20) we have 66°p = 0 and by Lemma 10 p € B . We can
apply the uniqueness Theorem 1 on F' for 8 = br and it follows that p = 0 on F'.

So §°p = 0 on L and by Proposition 5 L is strongly infinitesimally rigid. The last assertion
follows also by Theorem 1. O

REMARK 19. — Note that in general b is not continuous with respect to F.

3.5. Non existence of Levi flat transversally parallelizable hypersurfaces in CP,,, n > 2

One of the basic questions in the theory of foliations is the following: Let & be a singular
holomorphic foliation of codimension 1 of CP,. Does every leaf of & accumulate to the
singular set of &? This question led to the conjecture of the non-existence of smooth Levi flat
hypersurfaces in CP,,, n > 2, and under suitable hypotheses, in compact complex manifolds.

We recall that for CPP,,, n > 3, the positive answer to this question was given in [15] and
[18]. For n = 2 the problem is still open. In this paragraph we prove the non existence of
transversally paralelizable Levi flat hypersurfaces in:
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a) connected complex manifolds M such that for every p # ¢ € M and every real
hyperplane H, in T, M there exists a holomorphic vector field Y on M such that Y (p) = 0
and Y (¢) ® H, = T, M (Theorem 5). The proof uses techniques developed in this paper.

b) complex compact Kéhler surfaces M such that dim H? (M) = 1 (Theorem 6). The
proof of this result was communicated to us by M. Brunella [2].

Both Theorems 5 and 6 imply that there are no transversally parallelisable Levi flat
hypersurfaces in CPs (Theorem 4).

THEOREM 4. — There are no transversally parallelizable C* Levi flat hypersurfaces in CP,,
n > 2.

Proof. — Recall that Y.-T. Siu’s theorem [19] and [11] prove the non existence of C? Levi
flat hypersurfaces in CP,,, n > 3.
Let L be a transversally parallelizable Levi flat hypersurface in CP5. Suppose that Y is

a holomorphic vector field on M. Then (®} (L)) , Is a Levi-flat deformation of L and let

day

(at),e; be a family in ¥ 7 defining this Levi-flat deformation of L. Set p = 3t =0

By (3.19) we have
d

= g,
dt|t=0
Theorem 2 implies that L is strongly infinitesimally rigid and it follows that §°p = 0. By
Lemma 4, we may suppose that 6 = ds, so dgp = 0.

C

=6.

As a Levi flat hypersurface in CP; has no compact leaves, every leaf is dense in L and it
follows that p is constant.

Let g be a fixed Hermitian metric on CP; and Z = grad,r/ ||gradgr||z. As in 3.1,
a; (X) = r(X (t)), X € CPy with X (t) = vzx N ®) (L) and vz x the integral curve
of Z passing through X . We have

Y=Y,+Y;
where
Y,=dr(Y)Z,Y;(r)=Y —dr(Y)Z
are the normal and tangential components of Y. Sincea; (X) =17 <<Df" (X )) it follows that

B da;

T dt =0
AsY, =(Z,Y), Z,where -, ) is the scalar product induced by g we obtain thatp = (Z,Y’)
and we conclude that (Z,Y’)  is constant on L for every holomorphic vector field on M.

=dr(Y,) =Y, (r).

Let X € L and consider homogeneous coordinates [z, 21, 22] in CPy such that
X = [1,0,0] and the Euler vector field Y such that Y ([1,0,0]) = 0. Since

(2,Y), (X)=(Z([1,0,0]),Y[1,0,0]), = 0,

it follows that (Z,Y") g =0 and this means that Y is tangent to L. But by Siu’s Proposition 2.3
[19], this gives a contradiction. O

This theorem can be generalized and proved without using Y.-T. Siu’s Proposition 2.3
from [19] :
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THEOREM 5. — Let M be a connected complex manifold such that for every p # q € M
and every real hyperplane Hgy in T, M there exists a holomorphic vector field Y on M such that
Y (p) =0andY (q)® Hy = TyM. Then there are no compact transversally parallelizable Levi
flat hypersurfaces in M. The hypotheses are fulfilled if M = CP,,, n > 2.

Proof. — Let L be a transversally parallelizable Levi flat hypersurface in M. As in the
proof of Theorem 4, (Z,Y) p is constant on every leaf of the Levi foliation of L for every
holomorphic vector field on M. Let p € L and let ¢ be a distinct point of the leaf F' passing
through p. Let Y be a holomorphic vector field on M such thatY (p) =0andY (¢)®T,L =
T,M. Since Y (p) = 0 it follows that Y is tangent to F' and we obtain a contradiction. [

LemMma 11. — Let L be a real hypersurface in a complex compact Kdihler surface M such
that M\ L = Uy U Uy where Uy, Uy are open disjoint subsets of M and let w be the (1,1)-form
associated to the Kiihler metric of M. Suppose that dim H? (M) = 1. Then

1) w is exact on Uy or on Us;

il) the restriction of w to L is exact.

Proof. — 1) Let 9 be a cycle such that H? (M) = C [¢]. Suppose that w is neither exact
on U; nor on U,. Then there exist 2-cycles ¢; C U, such that f(pj w # 0,7 = 1,2. But
lpj] = ¢ [¥], 5 = 1,2 and [p1] [p2] = 0. Contradiction.

i) Suppose that w is exact on U;. Let ¢ be a 2-cycle ¢ on L. We can approximate ¢ by
2-cycles . on U;. Since fw w = 0, it follows that fw w=0,. O

COROLLARY 7. — Under the hypotheses of Lemma 11 we have fL yAw = 0 for every closed
1-form ~ on L.

Proof. — By Lemma 11, w = da on L, so

[ane=[dena=o 0

THEOREM 6. — Let L be a real hypersurface in a complex compact Kdihler surface M such
that M\L = Uy U Uy where Uy, Us are open disjoint subsets of M such that dim H? (M) = 1.
There are no transversally parallelizable Levi flat hypersurfaces in M.

Proof. — Let w be the (1, 1)-form associated to the Kéhler metric of M. Let L be a Levi
flat transversally parallelizable hypersurface in M such that the Levi foliation of L is given
by the I-form . Then v A w(z) # 0 for every z € L. Indeed, let x € L and choose
local coordinates (¢1,to,t3) in a neighborhood of x such that x = 0, v = «(¢1)dt; and
(0, t2, t3) are coordinates on the leaf L, through . There exist local holomorphic coordinates
z € (z1,%2) in a neighborhood V of z such that L, = {z € V' : 2 = 0}. It follows that
o (0)dty A dzy Adzy # 0. Consequently [, Yy Aw > 0or [, ¥ Aw < 0 and we obtain a
contradiction by Corollary 7. O

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



310 P. DE BARTOLOMEIS AND A. JORDAN

Acknowledgements

We would like to thank the referee of our paper who indicated us the reference [14], noticed
an error in the first version of the manuscript and did a lot of remarks that improved the
quality of the paper. He also remarked that the proof of Theorem 4 follows by the fact that
a closed form defining the Levi foliation of L defines a holonomy invariant Lebesgue-class
measure on transversals. Thus, by a Theorem of D. Sullivan [20], there is a closed current
T +# 0 directed by the Levi foliation. But as L can be isotoped on L’, which is still foliated
and disjoint of L, we obtain a contradiction. The authors would also like to thank T.-C. Dinh
for useful discussions.

BIBLIOGRAPHY

[1] P. DE BARTOLOMEIS, Z and Zy-deformation theory for holomorphic and symplectic
manifolds, in Complex, Contact, and Symmetric Manifolds (Birkhauser, ed.), PM
234, 2005, 75-103.

[2] M. BRUNELLA (2010), personal communication.

[3] E. CARTAN, Sur la géométrie pseudo-conforme des hypersurfaces de I’espace de deux
variables complexes, Ann. Mat. Pura Appl. 11 (1932), 17-90.

[4] D. CeErvEAU, Minimaux des feuilletages algébriques de CP,,, Ann. Inst. Fourier 43
(1993), 1535-1543.

[5] K. DiEDERICH, T. OHsAwA, On the displacement rigidity of Levi flat hypersurfaces -
The case of boundaries of disc bundle over compact Riemann surfaces, Publ. RIMS
43 (2007), 171-180.

[6] M. GERSTENHABER, On deformation on rings and algebras, Ann. of Math. 79 (1964),
59-103.

[7] C. GODBILLON, Feuilletages: Etudes géométriques, Birkhauser, 1991.

[8] W. GOoLDMAN, J. MILLsON, The deformation theory of representations of fundamental
groups of compact Kihler manifolds, Publ. Math. IHES 67 (1988), 43-96.

[9] X. GonNg, D. BurNs, Singular Levi-flat real analytic hypersurfaces, Amer. J. Math. 121
(1999), 23-53.

[10] J. W. GrEY, Some global properties of contact structures, Ann. of Math. 69 (1959), 421
450.

[11] A. IorDAN, F. MATTHEY, Régularité de I'opérateur 9 et théoréme de Siu sur la non-
existence d’hypersurfaces Levi-plates dans 1’espace projectif complexe CP,,, n > 3,
C. R. Acad. Sc. Paris 346 (2008), 395-400.

[12] K. KopaIrA, Complex manifolds and deformation of complex structures, Springer, 2005.

[13] K. KopaIra, D. SPENCER, On deformations of complex analytic structures I and 11,
Ann. of Math. 67 (1958), 328-466.

[14] K. KoDpAIrRA, D. SPENCER, Multifoliate structures, Ann. of Math. 74 (1961), 52-100.

[15] A. Lins NETO, A note on projective Levi flats and minimal sets of algebraic foliation,
Ann. Inst. Fourier 49 (1999), 1369-1385.

4¢ SERIE - TOME 48 — 2015 - N° 2


http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#1
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#2
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#3
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#4
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#5
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#6
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#7
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#8
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#9
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#10
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#11
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#12
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#13
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#14
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#15

DEFORMATIONS OF LEVI FLATS 311

[16] K. MatsumoTo, T. OHSAWA, On the real analytic Levi flat hypersurfaces on complex
tori of dimension two, Ann. Inst. Fourier 52 (2002), 1525-1532.

[17] A. NueNHUIS, R. W. RicHARDSON, Cohomology and deformations in graded Lie
algebra, Bull. A. M. S. 72 (1966), 1-29.

[18] Y.-T. Stu, Nonexistence of smooth Levi flat hypersurfaces in complex projective spaces
of dimension > 3, Ann. of Math. 151 (2000), 1217-1243.

[19] Y.-T. Stu, d-regularity for weakly pseudoconvex domains in compact Hermitian sym-
metric spaces with respect to invariant metrics, Ann. of Math. 156 (2002), 595-621.

[20] D. SuLLivaN, Cycles for dynamical study of foliated manifolds and complex manifolds,
Invent. Math. 36 (1976), 225-255.

[21] C. VorsIN, Théorie de Hodge et géométrie algébrique complexe, Soc. Math. France, 2002.

(Manuscrit regu le 1¢ novembre 2011 ;
accepté, aprés révision, le 23 janvier 2014.)

Paolo DE BARTOLOMEIS
Universita di Firenze
Dipartimento di Matematica Applicata "G. Sansone"
Via di Santa Marta 3
1-50139 Firenze, Italia
E-mail: paolo.debartolomeis@unifi.it

Andrei IORDAN
Institut de Mathématiques
UMR 7586 du CNRS, case 247
Université Pierre et Marie-Curie
4 Place Jussieu
75252 Paris Cedex 05, France
E-mail: andrei.iordan@imj-prg.fr

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE


http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#16
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#17
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#18
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#19
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#20
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_2.html#21




	1. Introduction
	2. Deformation theory of integrable distribution of codimension 1
	3. Deformations of Levi-flat hypersurfaces
	Bibliography

