A note on projective Levi flats and minimal sets of algebraic foliations
Annales de l'Institut Fourier, Tome 49 (1999) no. 4, pp. 1369-1385.

Dans cet article on démontre qu’un feuilletage holomorphe de codimension un dans n,n3, n’a pas de minimaux non triviaux. On démontre aussi que pour n3, il n’existe pas de surfaces de Levi plates, analytiques réelles, dans n.

In this paper we prove that holomorphic codimension one singular foliations on n,n3 have no non trivial minimal sets. We prove also that for n3, there is no real analytic Levi flat hypersurface in n.

@article{AIF_1999__49_4_1369_0,
     author = {Lins Neto, Alcides },
     title = {A note on projective {Levi} flats and minimal sets of algebraic foliations},
     journal = {Annales de l'Institut Fourier},
     pages = {1369--1385},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {49},
     number = {4},
     year = {1999},
     doi = {10.5802/aif.1721},
     mrnumber = {2000h:32047},
     zbl = {0963.32022},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1721/}
}
TY  - JOUR
AU  - Lins Neto, Alcides 
TI  - A note on projective Levi flats and minimal sets of algebraic foliations
JO  - Annales de l'Institut Fourier
PY  - 1999
SP  - 1369
EP  - 1385
VL  - 49
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.1721/
DO  - 10.5802/aif.1721
LA  - en
ID  - AIF_1999__49_4_1369_0
ER  - 
%0 Journal Article
%A Lins Neto, Alcides 
%T A note on projective Levi flats and minimal sets of algebraic foliations
%J Annales de l'Institut Fourier
%D 1999
%P 1369-1385
%V 49
%N 4
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1721/
%R 10.5802/aif.1721
%G en
%F AIF_1999__49_4_1369_0
Lins Neto, Alcides . A note on projective Levi flats and minimal sets of algebraic foliations. Annales de l'Institut Fourier, Tome 49 (1999) no. 4, pp. 1369-1385. doi : 10.5802/aif.1721. https://www.numdam.org/articles/10.5802/aif.1721/

[AL-N] A. Lins Neto, Algebraic solutions of polynomial differential equations and foliations in dimension two, Springer Lecture Notes, 1345 (1988), 192-232. | MR | Zbl

[BB] P. Baum, R. Bott, On the zeroes of meromorphic vector fields, Essais en l'honneur de De Rham, (1970) 29-47. | MR | Zbl

[CLS1] C. Camacho, A. Lins Neto and P. Sad, Minimal sets of foliations on complex projective spaces, Publ. Math. IHES, 68 (1988) 187-203. | EuDML | Numdam | MR | Zbl

[CLS2] C. Camacho, A. Lins Neto and P. Sad, Foliations with algebraic limit sets, Ann. of Math., 135 (1992) 429-446. | MR | Zbl

[E] G. Elencwajg, Pseudo-convexité locale dans les variétés Kahlériennes, Ann. Inst. Fourier, 25-2 (1975), 295-314. | EuDML | Numdam | MR | Zbl

[G] M. Greenberg, Lectures on Algebraic Topology, W. A. Benjamin inc., 1967. | MR | Zbl

[H] M. Hirsh, Differential Topology, Springer Verlag, N.Y., 1976. | Zbl

[Ha] A. Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, serie 3, vol. 16 (1962), 367-397. | EuDML | Numdam | MR | Zbl

[HL] G. M. Henkin and J. Leiterer, Theory of Functions on Complex Manifolds, Birkhäuser, 1984. | Zbl

[M] J. Milnor, Morse Theory, Annals of Mathematics Studies 51, Princeton University Press, 1963. | Zbl

[MB] M. Brunella, Some remarks on indices of holomorphic vector fields, Prépublication 97, Université de Bourgogne (1996). | Zbl

[S] Y. T. Siu, Techniques of extension of analytic objects, Marcel Dekker Inc., New-York, 1974. | Zbl

[Sm] S. Smale, On gradient dynamical systems, Ann. of Math., 74 (1961). | Zbl

[ST] Y.T. Siu and G. Trautmann, Gap-sheaves and extension of coherent analytic subsheaves, Lect. Notes in Math., 172 (1971). | MR | Zbl

[T] A. Takeuchi, Domaines pseudo-convexes sur les variétés Kahlériennes, Jour. Math. Kyoto University, 6-3 (1967), 323-357. | MR | Zbl

[To] G. Tomassini, Tracce delle funzioni olomorfe sulle sottovarietà analitiche reali d'una varietà complessa, Ann. Scuola Norm. Sup. Pisa, (1966), 31-43. | Numdam | MR | Zbl

Cité par Sources :