Nous considérons une perturbation aléatoire du système de Navier-Stokes 2D dans un domaine borné à bord régulier. On suppose que la force aléatoire est non dégénérée et que sa loi est périodique en temps et a un support localisé en espace et en temps. En ce qui concerne le problème non perturbé, on suppose qu'il est approximativement contrôlable en temps infini par une force extérieure dont le support est inclus dans celui de la force aléatoire. Sous ces hypothèses, on montre que le processus de Markov engendré par la restriction des solutions aux instants de temps proportionnels à la période possède une unique distribution stationnaire, qui est exponentiellement mélangeante. La démonstration est basée sur un argument de couplage, une propriété de contrôlabilité locale pour le système de Navier-Stokes, une estimation pour la distance en variation totale entre une mesure et son image par une application lisse et quelques résultats classiques de la théorie du transport optimal.
We consider randomly forced 2D Navier-Stokes equations in a bounded domain with smooth boundary. It is assumed that the random perturbation is non-degenerate, and its law is periodic in time and has a support localised with respect to space and time. Concerning the unperturbed problem, we assume that it is approximately controllable in infinite time by an external force whose support is included in that of the random force. Under these hypotheses, we prove that the Markov process generated by the restriction of solutions to the instants of time proportional to the period possesses a unique stationary distribution, which is exponentially mixing. The proof is based on a coupling argument, a local controllability property of the Navier-Stokes system, an estimate for the total variation distance between a measure and its image under a smooth mapping, and some classical results from the theory of optimal transport.
DOI : 10.24033/asens.2244
Keywords: Navier-Stokes equations, stationary measures, exponential mixing.
Mot clés : Équations de Navier-Stokes, mesures stationnaires, mélange exponentiel.
@article{ASENS_2015__48_2_253_0, author = {Shirikyan, Armen}, title = {Control and mixing for {2D} {Navier-Stokes} equations with space-time localised noise}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {253--280}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {2}, year = {2015}, doi = {10.24033/asens.2244}, mrnumber = {3346171}, zbl = {1319.35167}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2244/} }
TY - JOUR AU - Shirikyan, Armen TI - Control and mixing for 2D Navier-Stokes equations with space-time localised noise JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 253 EP - 280 VL - 48 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2244/ DO - 10.24033/asens.2244 LA - en ID - ASENS_2015__48_2_253_0 ER -
%0 Journal Article %A Shirikyan, Armen %T Control and mixing for 2D Navier-Stokes equations with space-time localised noise %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 253-280 %V 48 %N 2 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2244/ %R 10.24033/asens.2244 %G en %F ASENS_2015__48_2_253_0
Shirikyan, Armen. Control and mixing for 2D Navier-Stokes equations with space-time localised noise. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 2, pp. 253-280. doi : 10.24033/asens.2244. http://www.numdam.org/articles/10.24033/asens.2244/
Feedback stabilization of Navier-Stokes equations, ESAIM Control Optim. Calc. Var., Volume 9 (2003), pp. 197-206 (ISSN: 1292-8119) | DOI | Numdam | MR | Zbl
Exponential mixing of the 2D stochastic Navier-Stokes dynamics, Comm. Math. Phys., Volume 230 (2002), pp. 87-132 (ISSN: 0010-3616) | DOI | MR | Zbl
, Mathematical Surveys and Monographs, 164, Amer. Math. Soc., Providence, RI, 2010, 488 pages (ISBN: 978-0-8218-4993-4) | DOI | MR | Zbl
Internal exponential stabilization to a nonstationary solution for 3D Navier-Stokes equations, SIAM J. Control Optim., Volume 49 (2011), pp. 1454-1478 (ISSN: 0363-0129) | DOI | MR | Zbl
Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., Volume 53 (2004), pp. 1443-1494 (ISSN: 0022-2518) | DOI | MR | Zbl
, Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992, 532 pages (ISBN: 0-444-89004-1) | MR | Zbl
, Cambridge Studies in Advanced Math., 74, Cambridge Univ. Press, Cambridge, 2002, 555 pages (ISBN: 0-521-00754-2) | DOI | MR | Zbl
Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation, Comm. Math. Phys., Volume 224 (2001), pp. 83-106 (ISSN: 0010-3616) | DOI | MR | Zbl
Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl., Volume 83 (2004), pp. 1501-1542 (ISSN: 0021-7824) | DOI | MR | Zbl
Ergodicity of the 2-D Navier-Stokes equation under random perturbations, Comm. Math. Phys., Volume 172 (1995), pp. 119-141 http://projecteuclid.org/euclid.cmp/1104273961 (ISSN: 0010-3616) | DOI | MR | Zbl
Stabilization for the 3D Navier-Stokes system by feedback boundary control, Discrete Contin. Dyn. Syst., Volume 10 (2004), pp. 289-314 (ISSN: 1078-0947) | DOI | MR | Zbl
Exact controllability of the Navier-Stokes and Boussinesq equations, Uspekhi Mat. Nauk, Volume 54, no. 3 (1999), pp. 93-146 (ISSN: 0042-1316) | DOI | MR | Zbl
Exponential mixing properties of stochastic PDEs through asymptotic coupling, Probab. Theory Related Fields, Volume 124 (2002), pp. 345-380 (ISSN: 0178-8051) | DOI | MR | Zbl
Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. of Math., Volume 164 (2006), pp. 993-1032 (ISSN: 0003-486X) | DOI | MR | Zbl
Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations, Ann. Probab., Volume 36 (2008), pp. 2050-2091 (ISSN: 0091-1798) | DOI | MR | Zbl
A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs, Electron. J. Probab., Volume 16 (2011), pp. no. 23, 658-738 (ISSN: 1083-6489) | DOI | MR | Zbl
, Academic Press, New York, 1963
Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var., Volume 6 (2001), pp. 39-72 (ISSN: 1292-8119) | DOI | Numdam | MR | Zbl
, Studies in Mathematics and its Applications, 6, North-Holland Publishing Co., Amsterdam-New York, 1979, 460 pages (ISBN: 0-444-85167-4) | MR | Zbl
A coupling approach to randomly forced nonlinear PDEs. II, Comm. Math. Phys., Volume 230 (2002), pp. 81-85 (ISSN: 0010-3616) | DOI | MR | Zbl
Stochastic dissipative PDEs and Gibbs measures, Comm. Math. Phys., Volume 213 (2000), pp. 291-330 (ISSN: 0010-3616) | DOI | MR | Zbl
A coupling approach to randomly forced nonlinear PDE's. I, Comm. Math. Phys., Volume 221 (2001), pp. 351-366 (ISSN: 0010-3616) | DOI | MR | Zbl
, Cambridge Univ. Press, 2012 |Diffeomorphisms of function spaces that correspond to quasilinear parabolic equations, Mat. Sb. (N.S.), Volume 117(159) (1982), p. 359-378, 431 (ISSN: 0368-8666) | MR | Zbl
Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics, Comm. Math. Phys., Volume 230 (2002), pp. 421-462 (ISSN: 0010-3616) | DOI | MR | Zbl
Ergodic theory of infinite dimensional systems with applications to dissipative parabolic PDEs, Comm. Math. Phys., Volume 227 (2002), pp. 461-481 (ISSN: 0010-3616) | DOI | MR | Zbl
Exponential mixing for 2D Navier-Stokes equations perturbed by an unbounded noise, J. Math. Fluid Mech., Volume 6 (2004), pp. 169-193 (ISSN: 1422-6928) | DOI | MR | Zbl
, Instability in models connected with fluid flows. II (Int. Math. Ser. (N. Y.)), Volume 7, Springer, New York, 2008, pp. 155-188 | DOI | MR | Zbl
, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York, 1979, 519 pages (ISBN: 0-444-85307-3; 0-444-85308-1) | MR | Zbl
, Probability and its applications, Springer, New York, 2000 | MR | Zbl
, Kluwer, Dordrecht, 1988 |, Grundl. math. Wiss., 338, Springer, Berlin, 2009, 973 pages (ISBN: 978-3-540-71049-3) | DOI | MR | Zbl
, Modern Birkhäuser Classics, Birkhäuser, Boston, MA, 2008, 260 pages (ISBN: 978-0-8176-4732-2) | DOI | MR | Zbl
Cité par Sources :