On étudie le problème de contrôlabilité locale exacte pour les équations de Navier-Stokes incompressibles dans un domaine borné avec un contrôle réparti dans un sous-domaine On obtient le résultat suivant. Supposons que soit une solution des équations de Navier-Stokes et une condition initiale telle que pour assez petit. On montre alors qu’il existe un contrôle localement réparti tel que la solution des équations de Navier-Stokes :
We study the local exact controllability problem for the Navier-Stokes equations that describe an incompressible fluid flow in a bounded domain with control distributed in a subdomain . The result that we obtained in this paper is as follows. Suppose that is a given solution of the Navier-Stokes equations. Let be a given initial condition and where is small enough. Then there exists a locally distributed control such that the solution of the Navier-Stokes equations:
Mots clés : locally distributed control, Navier-Stokes system
@article{COCV_2001__6__39_0, author = {Imanuvilov, Oleg Yu.}, title = {Remarks on exact controllability for the {Navier-Stokes} equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {39--72}, publisher = {EDP-Sciences}, volume = {6}, year = {2001}, mrnumber = {1804497}, zbl = {0961.35104}, language = {en}, url = {http://www.numdam.org/item/COCV_2001__6__39_0/} }
TY - JOUR AU - Imanuvilov, Oleg Yu. TI - Remarks on exact controllability for the Navier-Stokes equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2001 SP - 39 EP - 72 VL - 6 PB - EDP-Sciences UR - http://www.numdam.org/item/COCV_2001__6__39_0/ LA - en ID - COCV_2001__6__39_0 ER -
Imanuvilov, Oleg Yu. Remarks on exact controllability for the Navier-Stokes equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 39-72. http://www.numdam.org/item/COCV_2001__6__39_0/
[1] Optimal control. Consultants Bureau, New York (1987). | MR | Zbl
, and ,[2] Exact controllability for semilinear parabolic equations with Neumann boundary conditions. J. Dynam. Control Systems 2 (1996) 449-483. | Zbl
, and ,[3] On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier-Slip boundary conditions. ESAIM: COCV 1 (1996) 35-75. | EuDML | Numdam | Zbl
,[4] On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155-188. | Zbl
,[5] Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris Sér. I Math. 317 (1993) 271-276. | Zbl
,[6] Global exact controllability of the 2-D Navier-Stokes equations on manifold without boundary. Russian J. Math. Phys. 4 (1996) 1-20. | Zbl
and ,[7] Résultats d'unicité pour les équations de Stokes et applications au contrôle. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 1191-1196. | Zbl
,[8] Prolongement unique des solutions de l'équation de Stokes. Comm. Partial Differential Equations 21 (1996) 573-596. | Zbl
and ,[9] Local exact controllability of two dimensional Navier-Stokes system with control on the part of the boundary. Sb. Math. 187 (1996) 1355-1390. | Zbl
and ,[10] Local exact boundary controllability of the Boussinesq equation. SIAM J. Control Optim. 36 (1988) 391-421. | Zbl
and ,[11] Local exact controllability of the Navier-Stokes Equations. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 275-280. | Zbl
and ,[12] Controllability of evolution equations, Lecture notes series (1996), no. 34 SNU, Seoul. | MR | Zbl
and ,[13] On approximate controllability of the Stokes system. Ann. Fac. Sci. Toulouse 11 (1993) 205-232. | Numdam | Zbl
and ,[14] Exact controllability of the Navier-Stokes equations and the Boussinesq system. Russian Math. Surveys 54 (1999) 565-618. | Zbl
and ,[15] Contrôlabilité de l'équation d'Euler tridimensionnelle pour les fluides parfaits incompressibles, Séminaire sur les Équations aux Dérivées Partielles, 1997-1998, Exp No XV. École Polytechnique, Palaiseau (1998) 11. | Numdam
,[16] Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles en dimension 3. C. R. Acad. Sci. Paris Sér. I Math. (1997) 987-992. | Zbl
,[17] Linear partial differential operators. Springer-Verlag, Berlin (1963). | MR | Zbl
,[18] On the controllability of the Burgers equations. ESAIM: COCV 3 (1998) 83-95. | Numdam | Zbl
,[19] On exact controllability for the Navier-Stokes equations. ESAIM: COCV 3 (1998) 97-131. | Numdam | Zbl
,[20] Boundary controllability of parabolic equations. Sb. Math. 186 (1995) 879-900. | Zbl
,[21] Local exact controllability for the 2-D Navier-Stokes equations with the Navier slip boundary conditions. Lecture Notes in Phys. 491 (1977) 148-168. | Zbl
,[22] On Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, UTMS 98-46.
and ,[23] Introductory real analysis. Dover Publications, INC, New York (1996). | MR | Zbl
and ,[24] Linear and quasilinear equations of elliptic type. Academic Press, New York (1968).
and ,[25] Contrôle des systèmes distribués singuliers. Gauthier-Villars, Paris (1983). | MR | Zbl
,[26] Optimal control of systems governed by partial differential equations. Springer-Verlag (1971). | MR | Zbl
,[27] Are there connections between turbulence and controllability1990).
,[28] Non-Homogeneous Boundary Value Problems. Springer-Verlag, Berlin (1971).
and ,[29] Pseudodifferential operators. Princeton Univ. Press (1981). | MR | Zbl
,[30] Pseudodifferential operators and Nonlinear PDE. Birkhäuser (1991). | MR | Zbl
,[31] Navier-Stokes equations. North-Holland Publishing Company, Amsterdam (1979). | MR | Zbl
,