Remarks on exact controllability for the Navier-Stokes equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 39-72.

On étudie le problème de contrôlabilité locale exacte pour les équations de Navier-Stokes incompressibles dans un domaine Ω borné avec un contrôle réparti dans un sous-domaine ωΩ n ,n{2,3}. On obtient le résultat suivant. Supposons que v ^(t,x) soit une solution des équations de Navier-Stokes et v 0 (x) une condition initiale telle que v ^(0,·)-v 0 <ε pour ε assez petit. On montre alors qu’il existe un contrôle localement réparti u,suppu[0,T]×ω, tel que la solution v(t,x) des équations de Navier-Stokes :

t v-Δv+(v,)v=p+u+f,divv=0,v| Ω =0,v| t=0 =v 0
coïncide avec v ^(t,x) au temps T : v(T,x)v ^(T,x).

We study the local exact controllability problem for the Navier-Stokes equations that describe an incompressible fluid flow in a bounded domain Ω with control distributed in a subdomain ωΩ n ,n{2,3}. The result that we obtained in this paper is as follows. Suppose that v ^(t,x) is a given solution of the Navier-Stokes equations. Let v 0 (x) be a given initial condition and v ^(0,·)-v 0 <ε where ε is small enough. Then there exists a locally distributed control u,suppu(0,T)×ω such that the solution v(t,x) of the Navier-Stokes equations:

t v-Δv+(v,)v=p+u+f,divv=0,v| Ω =0,v| t=0 =v 0
coincides with v ^(t,x) at the instant T : v(T,x)v ^(T,x).

Classification : 35K10, 35K55, 35K60, 93B05, 93C10, 93C20
Mots-clés : locally distributed control, Navier-Stokes system
@article{COCV_2001__6__39_0,
     author = {Imanuvilov, Oleg Yu.},
     title = {Remarks on exact controllability for the {Navier-Stokes} equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {39--72},
     publisher = {EDP-Sciences},
     volume = {6},
     year = {2001},
     mrnumber = {1804497},
     zbl = {0961.35104},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2001__6__39_0/}
}
TY  - JOUR
AU  - Imanuvilov, Oleg Yu.
TI  - Remarks on exact controllability for the Navier-Stokes equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2001
SP  - 39
EP  - 72
VL  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/COCV_2001__6__39_0/
LA  - en
ID  - COCV_2001__6__39_0
ER  - 
%0 Journal Article
%A Imanuvilov, Oleg Yu.
%T Remarks on exact controllability for the Navier-Stokes equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2001
%P 39-72
%V 6
%I EDP-Sciences
%U http://www.numdam.org/item/COCV_2001__6__39_0/
%G en
%F COCV_2001__6__39_0
Imanuvilov, Oleg Yu. Remarks on exact controllability for the Navier-Stokes equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 39-72. http://www.numdam.org/item/COCV_2001__6__39_0/

[1] V.M. Alekseev, V.M. Tikhomirov and S.V. Fomin, Optimal control. Consultants Bureau, New York (1987). | MR | Zbl

[2] D. Chae, O.Yu. Imanuvilov and S.M. Kim, Exact controllability for semilinear parabolic equations with Neumann boundary conditions. J. Dynam. Control Systems 2 (1996) 449-483. | Zbl

[3] J.-M. Coron, On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier-Slip boundary conditions. ESAIM: COCV 1 (1996) 35-75. | EuDML | Numdam | Zbl

[4] J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155-188. | Zbl

[5] J.-M. Coron, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris Sér. I Math. 317 (1993) 271-276. | Zbl

[6] J.-M. Coron and A.V. Fursikov, Global exact controllability of the 2-D Navier-Stokes equations on manifold without boundary. Russian J. Math. Phys. 4 (1996) 1-20. | Zbl

[7] C. Fabre, Résultats d'unicité pour les équations de Stokes et applications au contrôle. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 1191-1196. | Zbl

[8] C. Fabre and G. Lebeau, Prolongement unique des solutions de l'équation de Stokes. Comm. Partial Differential Equations 21 (1996) 573-596. | Zbl

[9] A.V. Fursikov and O.Yu. Imanuvilov, Local exact controllability of two dimensional Navier-Stokes system with control on the part of the boundary. Sb. Math. 187 (1996) 1355-1390. | Zbl

[10] A.V. Fursikov and O.Yu. Imanuvilov, Local exact boundary controllability of the Boussinesq equation. SIAM J. Control Optim. 36 (1988) 391-421. | Zbl

[11] A.V. Fursikov and O.Yu. Imanuvilov, Local exact controllability of the Navier-Stokes Equations. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 275-280. | Zbl

[12] A.V. Fursikov and O.Yu. Imanuvilov, Controllability of evolution equations, Lecture notes series (1996), no. 34 SNU, Seoul. | MR | Zbl

[13] A.V. Fursikov and O.Yu. Imanuvilov, On approximate controllability of the Stokes system. Ann. Fac. Sci. Toulouse 11 (1993) 205-232. | Numdam | Zbl

[14] A.V. Fursikov and O.Yu. Imanuvilov, Exact controllability of the Navier-Stokes equations and the Boussinesq system. Russian Math. Surveys 54 (1999) 565-618. | Zbl

[15] O. Glass, Contrôlabilité de l'équation d'Euler tridimensionnelle pour les fluides parfaits incompressibles, Séminaire sur les Équations aux Dérivées Partielles, 1997-1998, Exp No XV. École Polytechnique, Palaiseau (1998) 11. | Numdam

[16] O. Glass, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles en dimension 3. C. R. Acad. Sci. Paris Sér. I Math. (1997) 987-992. | Zbl

[17] L. Hörmander, Linear partial differential operators. Springer-Verlag, Berlin (1963). | MR | Zbl

[18] T. Horsin, On the controllability of the Burgers equations. ESAIM: COCV 3 (1998) 83-95. | Numdam | Zbl

[19] O.Yu. Imanuvilov, On exact controllability for the Navier-Stokes equations. ESAIM: COCV 3 (1998) 97-131. | Numdam | Zbl

[20] O.Yu. Imanuvilov, Boundary controllability of parabolic equations. Sb. Math. 186 (1995) 879-900. | Zbl

[21] O.Yu. Imanuvilov, Local exact controllability for the 2-D Navier-Stokes equations with the Navier slip boundary conditions. Lecture Notes in Phys. 491 (1977) 148-168. | Zbl

[22] O.Yu. Imanuvilov and M. Yamamoto, On Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, UTMS 98-46.

[23] A.N. Kolmogorov and S.V. Fomin, Introductory real analysis. Dover Publications, INC, New York (1996). | MR | Zbl

[24] O.A. Ladyzenskaja and N.N. Ural'Ceva, Linear and quasilinear equations of elliptic type. Academic Press, New York (1968).

[25] J.L. Lions, Contrôle des systèmes distribués singuliers. Gauthier-Villars, Paris (1983). | MR | Zbl

[26] J.L. Lions, Optimal control of systems governed by partial differential equations. Springer-Verlag (1971). | MR | Zbl

[27] J.-L. Lions, Are there connections between turbulence and controllability1990).

[28] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems. Springer-Verlag, Berlin (1971).

[29] M. Taylor, Pseudodifferential operators. Princeton Univ. Press (1981). | MR | Zbl

[30] M. Taylor, Pseudodifferential operators and Nonlinear PDE. Birkhäuser (1991). | MR | Zbl

[31] R. Temam, Navier-Stokes equations. North-Holland Publishing Company, Amsterdam (1979). | MR | Zbl