Cet article est le premier d'une série consacrée aux cycles de Gross-Kudla-Schoen généralisés appartenant aux groupes de Chow de produits de trois variétés de Kuga-Sato, et aux systèmes d'Euler qui leur sont associés. La série au complet repose sur une variante -adique de la formule de Gross-Zagier qui relie l'image des cycles de Gross-Kudla-Schoen par l'application d'Abel-Jacobi -adique aux valeurs spéciales de certaines fonctions -adiques attachées à la convolution de Garrett-Rankin de trois familles de Hida de formes modulaires cuspidales. L'objectif principal de cet article est de décrire et de démontrer cette variante.
This article is the first in a series devoted to studying generalised Gross-Kudla-Schoen diagonal cycles in the product of three Kuga-Sato varieties and the Euler system properties of the associated Selmer classes, with special emphasis on their application to the Birch-Swinnerton-Dyer conjecture and the theory of Stark-Heegner points. The basis for the entire study is a -adic formula of Gross-Zagier type which relates the images of these diagonal cycles under the -adic Abel-Jacobi map to special values of certain -adic -functions attached to the Garrett-Rankin triple convolution of three Hida families of modular forms. The main goal of this article is to describe and prove this formula.
DOI : 10.24033/asens.2227
Keywords: Gross-Kudla-Schoen cycle, Garrett-Rankin $p$-adic $L$-function, $p$-adic Abel-Jacobi map, Chow group, Coleman integration.
Mot clés : Cycle de Gross-Kudla-Schoen, fonction $L$ $p$-adique de Garrett-Rankin, application d'Abel-Jacobi $p$-adique, groupe de Chow, intégration de Coleman.
@article{ASENS_2014__47_4_779_0, author = {Darmon, Henri and Rotger, Victor}, title = {Diagonal cycles and {Euler} systems {I:} {A} $p$-adic {Gross-Zagier} formula}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {779--832}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 47}, number = {4}, year = {2014}, doi = {10.24033/asens.2227}, mrnumber = {3250064}, zbl = {1356.11039}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2227/} }
TY - JOUR AU - Darmon, Henri AU - Rotger, Victor TI - Diagonal cycles and Euler systems I: A $p$-adic Gross-Zagier formula JO - Annales scientifiques de l'École Normale Supérieure PY - 2014 SP - 779 EP - 832 VL - 47 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2227/ DO - 10.24033/asens.2227 LA - en ID - ASENS_2014__47_4_779_0 ER -
%0 Journal Article %A Darmon, Henri %A Rotger, Victor %T Diagonal cycles and Euler systems I: A $p$-adic Gross-Zagier formula %J Annales scientifiques de l'École Normale Supérieure %D 2014 %P 779-832 %V 47 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2227/ %R 10.24033/asens.2227 %G en %F ASENS_2014__47_4_779_0
Darmon, Henri; Rotger, Victor. Diagonal cycles and Euler systems I: A $p$-adic Gross-Zagier formula. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 4, pp. 779-832. doi : 10.24033/asens.2227. http://www.numdam.org/articles/10.24033/asens.2227/
Kato's Euler system and rational points on elliptic curves I: A -adic Beilinson formula (to appear in Israel J. of Math ) | MR | Zbl
Generalized Heegner cycles and -adic Rankin -series, Duke Math. J., Volume 162 (2013), pp. 1033-1148 (ISSN: 0012-7094) | DOI | MR | Zbl
Beilinson-Flach elements and Euler Systems I: syntomic regulators and -adic Rankin L-series (2012) (preprint http://www.math.mcgill.ca/darmon/pub/Articles/Research/58.BDR-Flach1/paper.pdf ) | MR
A generalization of Coleman's -adic integration theory, Invent. Math., Volume 142 (2000), pp. 397-434 (ISSN: 0020-9910) | DOI | MR | Zbl
Admissible -adic measures attached to triple products of elliptic cusp forms, Doc. Math., Volume Extra Vol. (2006), pp. 77-132 (ISSN: 1431-0635) | MR | Zbl
-adic modular forms of non-integral weight over Shimura curves, Compos. Math., Volume 149 (2013), pp. 32-62 (ISSN: 0010-437X) | DOI | MR | Zbl
, , and overconvergence, Int. Math. Res. Not., Volume 1995 (1995), pp. 23-41 (ISSN: 1073-7928) | DOI | MR | Zbl
, -adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991) (Contemp. Math.), Volume 165, Amer. Math. Soc., Providence, RI, 1994, pp. 21-51 | DOI | MR | Zbl
Classical and overconvergent modular forms, J. Théor. Nombres Bordeaux, Volume 7 (1995), pp. 333-365 http://jtnb.cedram.org/item?id=JTNB_1995__7_1_333_0 (ISSN: 1246-7405) | DOI | Numdam | MR | Zbl
Algebraic properties and effective computations of Chow-Heegner points (2014)
Algorithms for Chow-Heegner points via iterated integrals (with an appendix by W. Stein) (to appear in Math. of Computation ) | MR
Test vectors for trilinear forms when at least one representation is not supercuspidal, Manuscripta Math., Volume 133 (2010), pp. 479-504 (ISSN: 0025-2611) | DOI | MR | Zbl
Diagonal cycles and Euler systems II: The Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin -functions (submitted) | MR
Iterated integrals, diagonal cycles and rational points on elliptic curves, Publ. Math. Besançon Algèbre Théorie Nombres, Volume 2 (2012), pp. 19-46 | Numdam | MR | Zbl
Heights and the central critical values of triple product -functions, Compositio Math., Volume 81 (1992), pp. 143-209 (ISSN: 0010-437X) | Numdam | MR | Zbl
Test vectors for linear forms, Math. Ann., Volume 291 (1991), pp. 343-355 (ISSN: 0025-5831) | DOI | MR | Zbl
The modified diagonal cycle on the triple product of a pointed curve, Ann. Inst. Fourier (Grenoble), Volume 45 (1995), pp. 649-679 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Galois representations into attached to ordinary cusp forms, Invent. Math., Volume 85 (1986), pp. 545-613 (ISSN: 0020-9910) | DOI | MR | Zbl
Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup., Volume 19 (1986), pp. 231-273 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
A -adic measure attached to the zeta functions associated with two elliptic modular forms. II, Ann. Inst. Fourier (Grenoble), Volume 38 (1988), pp. 1-83 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
, London Mathematical Society Student Texts, 26, Cambridge Univ. Press, Cambridge, 1993, 386 pages (ISBN: 0-521-43411-4; 0-521-43569-2) | DOI | MR | Zbl
The central critical value of a triple product -function, Ann. of Math., Volume 133 (1991), pp. 605-672 (ISSN: 0003-486X) | DOI | MR | Zbl
-adic measures and square roots of special values of triple product -functions, Math. Ann., Volume 320 (2001), pp. 127-147 (ISSN: 0025-5831) | DOI | MR | Zbl
Trilinear forms and the central values of triple product -functions, Duke Math. J., Volume 145 (2008), pp. 281-307 (ISSN: 0012-7094) | DOI | MR | Zbl
-adic modular forms over Shimura curves over (1999) | MR
, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Math.), Volume 350, Springer, Berlin, 1973, pp. 69-190 | MR | Zbl
Efficient computation of -adic Rankin -functions to appear in Boeckle, G. and Wiese, G. (eds.) Computation with modular forms, Springer | MR | Zbl
Computations with classical and -adic modular forms, LMS J. Comput. Math., Volume 14 (2011), pp. 214-231 (ISSN: 1461-1570) | DOI | MR | Zbl
, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) (CRM Proc. Lecture Notes), Volume 24, Amer. Math. Soc., Providence, RI, 2000, pp. 367-379 | MR | Zbl
On the -adic height of Heegner cycles, Math. Ann., Volume 302 (1995), pp. 609-686 (ISSN: 0025-5831) | DOI | MR | Zbl
, Motives (Seattle, WA, 1991) (Proc. Sympos. Pure Math.), Volume 55, Amer. Math. Soc., Providence, RI, 1994, pp. 251-292 | MR | Zbl
Points de Heegner et dérivées de fonctions -adiques, Invent. Math., Volume 89 (1987), pp. 455-510 (ISSN: 0020-9910) | DOI | MR | Zbl
Trilinear forms for representations of and local -factors, Compositio Math., Volume 75 (1990), pp. 1-46 (ISSN: 0010-437X) | Numdam | MR | Zbl
Rankin triple functions, Compositio Math., Volume 64 (1987), pp. 31-115 (ISSN: 0010-437X) | Numdam | MR | Zbl
Motives for modular forms, Invent. Math., Volume 100 (1990), pp. 419-430 (ISSN: 0020-9910) | DOI | MR | Zbl
, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972) (Lecture Notes in Math.), Volume 350, Springer, Berlin, 1973, pp. 191-268 | MR | Zbl
On a class of nearly holomorphic automorphic forms, Ann. of Math., Volume 123 (1986), pp. 347-406 (ISSN: 0003-486X) | DOI | MR | Zbl
Nearly overconvergent modular forms to appear in the Proceedings of conference IWASAWA 2012 (Heidelberg) | MR
Rankin triple products and quantum chaos, ISBN: 978-0493-52934-9, ProQuest LLC, Ann Arbor, MI (2002) http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3039710 | MR
Triple product L-series and Gross-Schoen cycles I: split case (2010) (preprint http://www.math.columbia.edu/~szhang/papers/TripleIver1-6.pdf )
Cité par Sources :