Diagonal cycles and Euler systems I: A p-adic Gross-Zagier formula
[Cycles de Gross-Schoen et systèmes d'Euler I : une formule de Gross-Zagier p-adique]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 4, pp. 779-832.

Cet article est le premier d'une série consacrée aux cycles de Gross-Kudla-Schoen généralisés appartenant aux groupes de Chow de produits de trois variétés de Kuga-Sato, et aux systèmes d'Euler qui leur sont associés. La série au complet repose sur une variante p-adique de la formule de Gross-Zagier qui relie l'image des cycles de Gross-Kudla-Schoen par l'application d'Abel-Jacobi p-adique aux valeurs spéciales de certaines fonctions L p-adiques attachées à la convolution de Garrett-Rankin de trois familles de Hida de formes modulaires cuspidales. L'objectif principal de cet article est de décrire et de démontrer cette variante.

This article is the first in a series devoted to studying generalised Gross-Kudla-Schoen diagonal cycles in the product of three Kuga-Sato varieties and the Euler system properties of the associated Selmer classes, with special emphasis on their application to the Birch-Swinnerton-Dyer conjecture and the theory of Stark-Heegner points. The basis for the entire study is a p-adic formula of Gross-Zagier type which relates the images of these diagonal cycles under the p-adic Abel-Jacobi map to special values of certain p-adic L-functions attached to the Garrett-Rankin triple convolution of three Hida families of modular forms. The main goal of this article is to describe and prove this formula.

Publié le :
DOI : 10.24033/asens.2227
Classification : 11F12, 11G05, 11G35, 11G40
Keywords: Gross-Kudla-Schoen cycle, Garrett-Rankin $p$-adic $L$-function, $p$-adic Abel-Jacobi map, Chow group, Coleman integration.
Mot clés : Cycle de Gross-Kudla-Schoen, fonction $L$ $p$-adique de Garrett-Rankin, application d'Abel-Jacobi $p$-adique, groupe de Chow, intégration de Coleman.
@article{ASENS_2014__47_4_779_0,
     author = {Darmon, Henri and Rotger, Victor},
     title = {Diagonal cycles and {Euler} systems {I:}   {A} $p$-adic {Gross-Zagier} formula},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {779--832},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 47},
     number = {4},
     year = {2014},
     doi = {10.24033/asens.2227},
     mrnumber = {3250064},
     zbl = {1356.11039},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2227/}
}
TY  - JOUR
AU  - Darmon, Henri
AU  - Rotger, Victor
TI  - Diagonal cycles and Euler systems I:   A $p$-adic Gross-Zagier formula
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2014
SP  - 779
EP  - 832
VL  - 47
IS  - 4
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2227/
DO  - 10.24033/asens.2227
LA  - en
ID  - ASENS_2014__47_4_779_0
ER  - 
%0 Journal Article
%A Darmon, Henri
%A Rotger, Victor
%T Diagonal cycles and Euler systems I:   A $p$-adic Gross-Zagier formula
%J Annales scientifiques de l'École Normale Supérieure
%D 2014
%P 779-832
%V 47
%N 4
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2227/
%R 10.24033/asens.2227
%G en
%F ASENS_2014__47_4_779_0
Darmon, Henri; Rotger, Victor. Diagonal cycles and Euler systems I:   A $p$-adic Gross-Zagier formula. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 4, pp. 779-832. doi : 10.24033/asens.2227. http://www.numdam.org/articles/10.24033/asens.2227/

Bertolini, M.; Darmon, H. Kato's Euler system and rational points on elliptic curves I: A p -adic Beilinson formula (to appear in Israel J. of Math ) | MR | Zbl

Bertolini, M.; Darmon, H.; Prasanna, K. Generalized Heegner cycles and p-adic Rankin L-series, Duke Math. J., Volume 162 (2013), pp. 1033-1148 (ISSN: 0012-7094) | DOI | MR | Zbl

Bertolini, M.; Darmon, H.; Rotger, V. Beilinson-Flach elements and Euler Systems I: syntomic regulators and p -adic Rankin L-series (2012) (preprint http://www.math.mcgill.ca/darmon/pub/Articles/Research/58.BDR-Flach1/paper.pdf ) | MR

Besser, A. A generalization of Coleman's p-adic integration theory, Invent. Math., Volume 142 (2000), pp. 397-434 (ISSN: 0020-9910) | DOI | MR | Zbl

Böcherer, S.; Panchishkin, A. A. Admissible p-adic measures attached to triple products of elliptic cusp forms, Doc. Math., Volume Extra Vol. (2006), pp. 77-132 (ISSN: 1431-0635) | MR | Zbl

Brasca, R. p-adic modular forms of non-integral weight over Shimura curves, Compos. Math., Volume 149 (2013), pp. 32-62 (ISSN: 0010-437X) | DOI | MR | Zbl

Coleman, R. F.; Gouvêa, F. Q.; Jochnowitz, N. E2, Θ, and overconvergence, Int. Math. Res. Not., Volume 1995 (1995), pp. 23-41 (ISSN: 1073-7928) | DOI | MR | Zbl

Coleman, R. F., p -adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991) (Contemp. Math.), Volume 165, Amer. Math. Soc., Providence, RI, 1994, pp. 21-51 | DOI | MR | Zbl

Coleman, R. F. Classical and overconvergent modular forms, J. Théor. Nombres Bordeaux, Volume 7 (1995), pp. 333-365 http://jtnb.cedram.org/item?id=JTNB_1995__7_1_333_0 (ISSN: 1246-7405) | DOI | Numdam | MR | Zbl

Daub, M. Algebraic properties and effective computations of Chow-Heegner points (2014)

Darmon, H.; Daub, M.; Lichtenstein, S.; Rotger, V. Algorithms for Chow-Heegner points via iterated integrals (with an appendix by W. Stein) (to appear in Math. of Computation ) | MR

Dimitrov, M.; Nyssen, L. Test vectors for trilinear forms when at least one representation is not supercuspidal, Manuscripta Math., Volume 133 (2010), pp. 479-504 (ISSN: 0025-2611) | DOI | MR | Zbl

Darmon, H.; Rotger, V. Diagonal cycles and Euler systems II: The Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin L -functions (submitted) | MR

Darmon, H.; Rotger, V.; Sols, I. Iterated integrals, diagonal cycles and rational points on elliptic curves, Publ. Math. Besançon Algèbre Théorie Nombres, Volume 2 (2012), pp. 19-46 | Numdam | MR | Zbl

Gross, B. H.; Kudla, S. S. Heights and the central critical values of triple product L-functions, Compositio Math., Volume 81 (1992), pp. 143-209 (ISSN: 0010-437X) | Numdam | MR | Zbl

Gross, B. H.; Prasad, D. Test vectors for linear forms, Math. Ann., Volume 291 (1991), pp. 343-355 (ISSN: 0025-5831) | DOI | MR | Zbl

Gross, B. H.; Schoen, C. The modified diagonal cycle on the triple product of a pointed curve, Ann. Inst. Fourier (Grenoble), Volume 45 (1995), pp. 649-679 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl

Hida, H. Galois representations into GL 2(𝐙p[[X]]) attached to ordinary cusp forms, Invent. Math., Volume 85 (1986), pp. 545-613 (ISSN: 0020-9910) | DOI | MR | Zbl

Hida, H. Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup., Volume 19 (1986), pp. 231-273 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Hida, H. A p-adic measure attached to the zeta functions associated with two elliptic modular forms. II, Ann. Inst. Fourier (Grenoble), Volume 38 (1988), pp. 1-83 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl

Hida, H., London Mathematical Society Student Texts, 26, Cambridge Univ. Press, Cambridge, 1993, 386 pages (ISBN: 0-521-43411-4; 0-521-43569-2) | DOI | MR | Zbl

Harris, M.; Kudla, S. S. The central critical value of a triple product L-function, Ann. of Math., Volume 133 (1991), pp. 605-672 (ISSN: 0003-486X) | DOI | MR | Zbl

Harris, M.; Tilouine, J. p-adic measures and square roots of special values of triple product L-functions, Math. Ann., Volume 320 (2001), pp. 127-147 (ISSN: 0025-5831) | DOI | MR | Zbl

Ichino, A. Trilinear forms and the central values of triple product L-functions, Duke Math. J., Volume 145 (2008), pp. 281-307 (ISSN: 0012-7094) | DOI | MR | Zbl

Kassaei, P. p -adic modular forms over Shimura curves over (1999) | MR

Katz, N. M., Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Math.), Volume 350, Springer, Berlin, 1973, pp. 69-190 | MR | Zbl

Lauder, A. G. B. Efficient computation of p -adic Rankin L -functions to appear in Boeckle, G. and Wiese, G. (eds.) Computation with modular forms, Springer | MR | Zbl

Lauder, A. G. B. Computations with classical and p-adic modular forms, LMS J. Comput. Math., Volume 14 (2011), pp. 214-231 (ISSN: 1461-1570) | DOI | MR | Zbl

Nekovář, J., The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) (CRM Proc. Lecture Notes), Volume 24, Amer. Math. Soc., Providence, RI, 2000, pp. 367-379 | MR | Zbl

Nekovář, J. On the p-adic height of Heegner cycles, Math. Ann., Volume 302 (1995), pp. 609-686 (ISSN: 0025-5831) | DOI | MR | Zbl

Panchishkin, A. A., Motives (Seattle, WA, 1991) (Proc. Sympos. Pure Math.), Volume 55, Amer. Math. Soc., Providence, RI, 1994, pp. 251-292 | MR | Zbl

Perrin-Riou, B. Points de Heegner et dérivées de fonctions L p-adiques, Invent. Math., Volume 89 (1987), pp. 455-510 (ISSN: 0020-9910) | DOI | MR | Zbl

Prasad, D. Trilinear forms for representations of GL (2) and local ϵ-factors, Compositio Math., Volume 75 (1990), pp. 1-46 (ISSN: 0010-437X) | Numdam | MR | Zbl

Piatetski-Shapiro, I.; Rallis, S. Rankin triple L functions, Compositio Math., Volume 64 (1987), pp. 31-115 (ISSN: 0010-437X) | Numdam | MR | Zbl

Scholl, A. J. Motives for modular forms, Invent. Math., Volume 100 (1990), pp. 419-430 (ISSN: 0020-9910) | DOI | MR | Zbl

Serre, J.-P., Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972) (Lecture Notes in Math.), Volume 350, Springer, Berlin, 1973, pp. 191-268 | MR | Zbl

Shimura, G. On a class of nearly holomorphic automorphic forms, Ann. of Math., Volume 123 (1986), pp. 347-406 (ISSN: 0003-486X) | DOI | MR | Zbl

Urban, E. Nearly overconvergent modular forms to appear in the Proceedings of conference IWASAWA 2012 (Heidelberg) | MR

Watson, T. C. Rankin triple products and quantum chaos, ISBN: 978-0493-52934-9, ProQuest LLC, Ann Arbor, MI (2002) http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3039710 | MR

Yuan, X.; Zhang, S.; Zhang, W. Triple product L-series and Gross-Schoen cycles I: split case (2010) (preprint http://www.math.columbia.edu/~szhang/papers/TripleIver1-6.pdf )

Cité par Sources :