@article{JTNB_1995__7_1_333_0, author = {Coleman, Robert F.}, title = {Classical and overconvergent modular forms}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {333--365}, publisher = {Universit\'e Bordeaux I}, volume = {7}, number = {1}, year = {1995}, mrnumber = {1413582}, zbl = {1073.11515}, language = {en}, url = {http://www.numdam.org/item/JTNB_1995__7_1_333_0/} }
Coleman, Robert F. Classical and overconvergent modular forms. Journal de théorie des nombres de Bordeaux, Tome 7 (1995) no. 1, pp. 333-365. http://www.numdam.org/item/JTNB_1995__7_1_333_0/
[1] The Up operator of Atkin on modular forms of level three, Illinois Journal of Math. 24 (1980), 49-60. | MR | Zbl
,[2] Non-Archimedian Analysis, Springer-Verlag, (1984). | Zbl
, and ,[3] Comparaison entre la cohomologie algébrique et la cohomologie p-adique rigide à coefficients dans un module différentiel I, Inv. Math. 87 (1987), 83-99. | MR | Zbl
,[4] Comparaison entre la cohomologie algébrique et la cohomologie p-adique rigide à coefficients dans un module différentiel II, Math. Ann. (1988), 417-439. | MR | Zbl
,[5] Algebraic versus rigid cohomology woth logarithmic coefficients, to appear in the proceedings of the Barsotti conference. | Zbl
and ,[6] Reciprocity laws on curves, Compositio 72 (1989), 205-235. | Numdam | MR | Zbl
,[7] A p-adic Shimura isomorphism and p-adic periods of modular forms, Contemporary Math. 165 (1994), 21-51. | MR | Zbl
,[8] A p-adic inner product on elliptic modular forms, to appear in the procedings of the Barsotti conference. | MR
,[9] P-adic Banach spaces and Families of Modular forms, to appear. | MR
,[10] Classical and overconvergent forms of higher level, to appear in Journées Arithmetiques 1993.
,[11] E2, Θ and U, to appear.
, ,[12] The Up operator of Atkin on modular forms of level 2 with growth conditions, SLN 350 (1972), 57-67. | MR | Zbl
,[13] Hecke polynomials as congruence ζ functions in the elliptic modular case, Ann. of Math. (1967), 267-295. | Zbl
,[14] Crystalline cohomology and GL(2, Q), to appear. | MR
and ,[15] Arithmetic of p-adic modular forms, SLN 1304, (1988). | MR | Zbl
,[16] Continuity Properties of Modular Forms, Elliptic Curves and Related Topics, CRM Proceedings and Lecture Notes, AMS 4 (1994), 85-99. | MR | Zbl
,[17] Families of Modular Eigenforms, Mathematics of Computation 58 (1992), 793-805. | MR | Zbl
and ,[18] On the characterastic power series of the U operator, Annales de l'institut Fourier 43 2 (1993), 301-312. | Numdam | MR | Zbl
,[19] A tameness criterion for galois representations attached to modular forms (mod p), Duke Math. Jour. 61 (1990), 445-516. | MR | Zbl
,[20] Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Ec. Norm. Sup. 19 (1986), 231-273. | Numdam | MR | Zbl
,[21] p-adic properties of modular forms, Modular Functions of one variable III, SLN 350, (1972), 69-190. | MR | Zbl
,[22] Travaux de Dwork, Séminaire Bourbaki, 1971 /72, (1973) 167-200. | Numdam | MR | Zbl
,[23] The regularity Theoraem in Algebraic Geometry, Actes, Congrès intern. math. 1 (1970), 437-443. | MR | Zbl
,[24] Theorem A und Theorem B in der nichtarchimedischen Funktiontheorie, Invent. Math. 2 (1967), 256-273. | MR | Zbl
,[25] On p-adic properties of the Eichler-selberg Trace formula II, Nagoya Math. J., Vol. 64 (1976) 87-96. | MR | Zbl
,[26] Modular Forms, Springer (1989). | MR | Zbl
,[27] Galois representations attached to eigenforrns with nebentypus, Modular Functions of one Variable V, SLN 601 (1976), 17-36. | MR | Zbl
,[28] Points of rigid analytic varieties, J. Reine angew. Math. 434 (1993), 127-157. | MR | Zbl
,[29] Endomorphismes complètements continues des espaces de Banach p-adiques, Publ. Math. I.H.E.S. 12 (1962), 69-85. | Numdam | MR | Zbl
,[30] Formes modulaires et fonctions zeta p-adiques, Modular Functions of one Variable III, SLN 350 (1972), 191-268. | MR | Zbl
,[31] Sur les intégrales attachées aux formes automorphes, J. Math. Soc. of Japan 11 (1959), 291-311. | MR | Zbl
,[32] On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields, Nagoya Math. J. 43 (1971), 199-208. | MR | Zbl
,