Viscous boundary layers in hyperbolic-parabolic systems with Neumann boundary conditions
[Couches limites visqueuses pour des systèmes hyperboliques-paraboliques avec condition aux limites de Neumann]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 1, pp. 181-243.

Nous initions l'étude des couches limites non caractéristiques de systèmes hyperboliques-paraboliques avec condition aux limites de Neumann. Plus généralement, nous étudions les couches limites avec condition aux limites de type mixte Dirichlet-Neumann, lorsque le nombre de conditions aux limites de Dirichlet est inférieur au nombre de modes caractéristiques rentrant dans le domaine, pour l'opérateur hyperbolique.

Dans le cas des systèmes linéaires à coefficients constants, nous obtenons un système hyperbolique limite avec des conditions aux limites de type Neumann ou Dirichlet-Neumann. Sous de bonnes hypothèses nous construisons des développements en couches limites BKW à tout ordre.

Dans le cas extrême où tous les modes caractéristiques sont rentrants et avec des conditions de Neumann, nous traitons complètement le cas quasilinéaire, prouvant la convergence vers un problème hyperbolique limite avec des conditions de Neumann au bord. Les estimations maximales de stabilité obtenues pour les problèmes linéarisés sont plus faibles que celles typiques correspondant à des conditions de type Dirichlet.

We initiate the study of noncharacteristic boundary layers in hyperbolic-parabolic problems with Neumann boundary conditions. More generally, we study boundary layers with mixed Dirichlet-Neumann boundary conditions where the number of Dirichlet conditions is fewer than the number of hyperbolic characteristic modes entering the domain, that is, the number of boundary conditions needed to specify an outer hyperbolic solution. We have shown previously that this situation prevents the usual WKB approximation involving an outer solution with pure Dirichlet conditions. It also rules out the usual maximal estimates for the linearization of the hyperbolic-parabolic problem about the boundary layer.

Here we show that for linear, constant-coefficient, hyperbolic-parabolic problems one obtains a reduced hyperbolic problem satisfying Neumann or mixed Dirichlet-Neumann rather than Dirichlet boundary conditions. When this hyperbolic problem can be solved, a unique formal boundary-layer expansion can be constructed. In the extreme case of pure Neumann conditions and totally incoming characteristics, we carry out a full analysis of the quasilinear case, obtaining a boundary-layer approximation to all orders with a rigorous error analysis. As a corollary we characterize the small viscosity limit for this problem. The analysis shows that although the associated linearized hyperbolic and hyperbolic-parabolic problems do not satisfy the usual maximal estimates for Dirichlet conditions, they do satisfy analogous versions with losses.

Publié le :
DOI : 10.24033/asens.2213
Classification : 35Q30; 35B35, 76D05
Keywords: Boundary layers, mixed Dirichlet-Neumann conditions, Evans-Lopatinski condition.
Mot clés : Couches limites, conditions mixtes Dirichlet-Neumann, condition Evans-Lopatinski.
@article{ASENS_2014__47_1_181_0,
     author = {Gues, Olivier and M\'etivier, Guy and Williams, Mark and Zumbrun, Kevin},
     title = {Viscous boundary layers  in hyperbolic-parabolic systems  with {Neumann} boundary conditions},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {181--243},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 47},
     number = {1},
     year = {2014},
     doi = {10.24033/asens.2213},
     mrnumber = {3205604},
     zbl = {1295.35035},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2213/}
}
TY  - JOUR
AU  - Gues, Olivier
AU  - Métivier, Guy
AU  - Williams, Mark
AU  - Zumbrun, Kevin
TI  - Viscous boundary layers  in hyperbolic-parabolic systems  with Neumann boundary conditions
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2014
SP  - 181
EP  - 243
VL  - 47
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2213/
DO  - 10.24033/asens.2213
LA  - en
ID  - ASENS_2014__47_1_181_0
ER  - 
%0 Journal Article
%A Gues, Olivier
%A Métivier, Guy
%A Williams, Mark
%A Zumbrun, Kevin
%T Viscous boundary layers  in hyperbolic-parabolic systems  with Neumann boundary conditions
%J Annales scientifiques de l'École Normale Supérieure
%D 2014
%P 181-243
%V 47
%N 1
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2213/
%R 10.24033/asens.2213
%G en
%F ASENS_2014__47_1_181_0
Gues, Olivier; Métivier, Guy; Williams, Mark; Zumbrun, Kevin. Viscous boundary layers  in hyperbolic-parabolic systems  with Neumann boundary conditions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 1, pp. 181-243. doi : 10.24033/asens.2213. http://www.numdam.org/articles/10.24033/asens.2213/

Benzoni-Gavage, S.; Serre, D., Oxford Mathematical Monographs, The Clarendon Press Oxford Univ. Press, 2007, 508 pages (ISBN: 978-0-19-921123-4; 0-19-921123-X) | MR | Zbl

Braslow, A. L., Monographs in aerospace history, 13, 1999

Chazarain, J.; Piriou, A., Studies in Mathematics and its Applications, 14, North-Holland Publishing Co., 1982, 559 pages (ISBN: 0-444-86452-0) | MR | Zbl

Coulombel, J.-F.; Secchi, P. Nonlinear compressible vortex sheets in two space dimensions, Ann. Sci. Éc. Norm. Supér., Volume 41 (2008), pp. 85-139 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Fornet, B. The Cauchy problem for 1-D linear nonconservative hyperbolic systems with possibly expansive discontinuity of the coefficient: a viscous approach, J. Differential Equations, Volume 245 (2008), pp. 2440-2476 (ISSN: 0022-0396) | DOI | MR | Zbl

Fornet, B. Viscous approach for linear hyperbolic systems with discontinuous coefficients, Ann. Fac. Sci. Toulouse Math., Volume 18 (2009), pp. 397-443 http://afst.cedram.org/item?id=AFST_2009_6_18_2_397_0 (ISSN: 0240-2963) | DOI | Numdam | MR | Zbl

Gues, O.; Métivier, G.; Williams, M.; Zumbrun, K. Multidimensional viscous shocks. II. The small viscosity limit, Comm. Pure Appl. Math., Volume 57 (2004), pp. 141-218 (ISSN: 0010-3640) | DOI | MR | Zbl

Gues, O.; Métivier, G.; Williams, M.; Zumbrun, K. Uniform stability estimates for constant-coefficient symmetric hyperbolic boundary value problems, Comm. Partial Differential Equations, Volume 32 (2007), pp. 579-590 (ISSN: 0360-5302) | DOI | MR | Zbl

Gues, O.; Métivier, G.; Williams, M.; Zumbrun, K. Viscous boundary value problems for symmetric systems with variable multiplicities, J. Differential Equations, Volume 244 (2008), pp. 309-387 (ISSN: 0022-0396) | DOI | MR | Zbl

Gues, O.; Métivier, G.; Williams, M.; Zumbrun, K. Existence and stability of noncharacteristic boundary layers for the compressible Navier-Stokes and viscous MHD equations, Arch. Ration. Mech. Anal., Volume 197 (2010), pp. 1-87 (ISSN: 0003-9527) | DOI | MR | Zbl

Gisclon, M.; Serre, D. Conditions aux limites pour un système strictement hyperbolique fournies par le schéma de Godunov, RAIRO Modél. Math. Anal. Numér., Volume 31 (1997), pp. 359-380 (ISSN: 0764-583X) | DOI | Numdam | MR | Zbl

Kreiss, H.-O. Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math., Volume 23 (1970), pp. 277-298 (ISSN: 0010-3640) | DOI | MR | Zbl

Métivier, G., Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, 2004, 194 pages (ISBN: 0-8176-3390-1) | DOI | MR | Zbl

Métivier, G.; Zumbrun, K. Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems, Discrete Contin. Dyn. Syst., Volume 11 (2004), pp. 205-220 (ISSN: 1078-0947) | DOI | MR | Zbl

Métivier, G.; Zumbrun, K. Hyperbolic boundary value problems for symmetric systems with variable multiplicities, J. Differential Equations, Volume 211 (2005), pp. 61-134 (ISSN: 0022-0396) | DOI | MR | Zbl

Métivier, G.; Zumbrun, K. Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems, Mem. Amer. Math. Soc., Volume 175 (2005) (ISSN: 0065-9266) | DOI | MR | Zbl

Nguyen, T.; Zumbrun, K. Long-time stability of large-amplitude noncharacteristic boundary layers for hyperbolic-parabolic systems, J. Math. Pures Appl., Volume 92 (2009), pp. 547-598 (ISSN: 0021-7824) | DOI | MR | Zbl

Nguyen, T.; Zumbrun, K. Long-time stability of multi-dimensional noncharacteristic viscous boundary layers, Comm. Math. Phys., Volume 299 (2010), pp. 1-44 (ISSN: 0010-3616) | DOI | MR | Zbl

Rao, I. Stability of noncharacteristic boundary-layers for the compressible nonisentropic Navier-Stokes equations, ISBN: 978-1124-01720-4, ProQuest LLC, Ann Arbor, MI (2010) http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3404587 | MR

Rousset, F. Inviscid boundary conditions and stability of viscous boundary layers, Asymptot. Anal., Volume 26 (2001), pp. 285-306 (ISSN: 0921-7134) | MR | Zbl

Rousset, F. Stability of small amplitude boundary layers for mixed hyperbolic-parabolic systems, Trans. Amer. Math. Soc., Volume 355 (2003), pp. 2991-3008 (ISSN: 0002-9947) | DOI | MR | Zbl

Schlichting, H., Translated by J. Kestin. 4th ed. McGraw-Hill Series in Mechanical Engineering, McGraw-Hill Book Co., 1960, 647 pages | MR | Zbl

Serre, D. Sur la stabilité des couches limites de viscosité, Ann. Inst. Fourier (Grenoble), Volume 51 (2001), pp. 109-130 http://aif.cedram.org/item?id=AIF_2001__51_1_109_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl

Serre, D. Second order initial boundary-value problems of variational type, J. Funct. Anal., Volume 236 (2006), pp. 409-446 (ISSN: 0022-1236) | DOI | MR | Zbl

Serre, D.; Zumbrun, K. Boundary layer stability in real vanishing viscosity limit, Comm. Math. Phys., Volume 221 (2001), pp. 267-292 (ISSN: 0010-3616) | DOI | MR | Zbl

Zumbrun, K. Stability of noncharacteristic boundary layers in the standing-shock limit, Trans. Amer. Math. Soc., Volume 362 (2010), pp. 6397-6424 (ISSN: 0002-9947) | DOI | MR | Zbl

Cité par Sources :