Nonlinear compressible vortex sheets in two space dimensions
[Nappes de tourbillon compressibles]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 41 (2008) no. 1, pp. 85-139.

Nous construisons des nappes de tourbillon supersoniques pour les équations d'Euler compressibles isentropiques en deux dimensions d'espace. Il s'agit d'un problème non-linéaire hyperbolique à frontière libre présentant deux difficultés principales : la frontière libre est caractéristique et la condition dite de Lopatinskii n'est satisfaite que dans un sens faible, ce qui induit des estimations à perte. Néanmoins nous montrons l'existence de telles solutions régulières par morceaux des équations d'Euler en utilisant un schéma itératif de type Nash-Moser palliant les pertes de régularité. Notre analyse s'étend au cas de discontinuités non-caractéristiques et faiblement stables comme certaines ondes de choc pour les équations d'Euler ou les transitions de phase liquide- vapeur.

We consider supersonic compressible vortex sheets for the isentropic Euler equations of gas dynamics in two space dimensions. The problem is a free boundary nonlinear hyperbolic problem with two main difficulties: the free boundary is characteristic, and the so-called Lopatinskii condition holds only in a weak sense, which yields losses of derivatives. Nevertheless, we prove the local existence of such piecewise smooth solutions to the Euler equations. Since the a priori estimates for the linearized equations exhibit a loss of regularity, our existence result is proved by using a suitable modification of the Nash-Moser iteration scheme. We also show how a similar analysis yields the existence of weakly stable shock waves in isentropic gas dynamics, and the existence of weakly stable liquid/vapor phase transitions.

DOI : 10.24033/asens.2064
Classification : 76N10, 35Q35, 35L50, 76E17
Mots-clés : compressible Euler equations, vortex sheets, contact discontinuities, weak stability, loss of derivatives
@article{ASENS_2008_4_41_1_85_0,
     author = {Coulombel, Jean-Fran\c{c}ois and Secchi, Paolo},
     title = {Nonlinear compressible vortex sheets in two space dimensions},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {85--139},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 41},
     number = {1},
     year = {2008},
     doi = {10.24033/asens.2064},
     mrnumber = {2423311},
     zbl = {1160.35061},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.2064/}
}
TY  - JOUR
AU  - Coulombel, Jean-François
AU  - Secchi, Paolo
TI  - Nonlinear compressible vortex sheets in two space dimensions
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2008
SP  - 85
EP  - 139
VL  - 41
IS  - 1
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/asens.2064/
DO  - 10.24033/asens.2064
LA  - en
ID  - ASENS_2008_4_41_1_85_0
ER  - 
%0 Journal Article
%A Coulombel, Jean-François
%A Secchi, Paolo
%T Nonlinear compressible vortex sheets in two space dimensions
%J Annales scientifiques de l'École Normale Supérieure
%D 2008
%P 85-139
%V 41
%N 1
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/asens.2064/
%R 10.24033/asens.2064
%G en
%F ASENS_2008_4_41_1_85_0
Coulombel, Jean-François; Secchi, Paolo. Nonlinear compressible vortex sheets in two space dimensions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 41 (2008) no. 1, pp. 85-139. doi : 10.24033/asens.2064. https://www.numdam.org/articles/10.24033/asens.2064/

[1] S. Alinhac, Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Comm. Partial Differential Equations 14 (1989), 173-230. | MR | Zbl

[2] S. Alinhac & S. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser, InterÉditions, 1991. | Zbl

[3] M. Artola & A. Majda, Nonlinear development of instabilities in supersonic vortex sheets. I. The basic kink modes, Phys. D 28 (1987), 253-281. | Zbl

[4] S. Benzoni-Gavage, Stability of multi-dimensional phase transitions in a van der Waals fluid, Nonlinear Anal. 31 (1998), 243-263. | MR | Zbl

[5] S. Benzoni-Gavage, Stability of subsonic planar phase boundaries in a van der Waals fluid, Arch. Ration. Mech. Anal. 150 (1999), 23-55. | MR | Zbl

[6] A. Blokhin & Y. Trakhinin, Stability of strong discontinuities in fluids and MHD, in Handbook of mathematical fluid dynamics, Vol. I, North-Holland, 2002, 545-652. | Zbl

[7] J. Chazarain & A. Piriou, Introduction to the theory of linear partial differential equations, Studies in Mathematics and its Applications 14, North-Holland Publishing Co., 1982. | Zbl

[8] J.-Y. Chemin, Dynamique des gaz à masse totale finie, Asymptotic Anal. 3 (1990), 215-220. | MR | Zbl

[9] J.-F. Coulombel, Weakly stable multidimensional shocks, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), 401-443. | Numdam | MR | Zbl

[10] J.-F. Coulombel, Well-posedness of hyperbolic initial boundary value problems, J. Math. Pures Appl. 84 (2005), 786-818. | MR | Zbl

[11] J.-F. Coulombel & A. Morando, Stability of contact discontinuities for the nonisentropic Euler equations, Ann. Univ. Ferrara Sez. VII (N.S.) 50 (2004), 79-90. | Zbl

[12] J.-F. Coulombel & P. Secchi, The stability of compressible vortex sheets in two space dimensions, Indiana Univ. Math. J. 53 (2004), 941-1012. | Zbl

[13] J. A. Fejer & J. W. Miles, On the stability of a plane vortex sheet with respect to three-dimensional disturbances, J. Fluid Mech. 15 (1963), 335-336. | Zbl

[14] J. Francheteau & G. Métivier, Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Astérisque 268 (2000), 198. | Numdam | Zbl

[15] H. Freistühler, Some results on the stability of non-classical shock waves, J. Partial Differential Equations 11 (1998), 25-38. | Zbl

[16] O. Guès, Problème mixte hyperbolique quasi-linéaire caractéristique, Comm. Partial Differential Equations 15 (1990), 595-645. | MR | Zbl

[17] R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 65-222. | MR | Zbl

[18] E. Harabetian, A convergent series expansion for hyperbolic systems of conservation laws, Trans. Amer. Math. Soc. 294 (1986), 383-424. | MR | Zbl

[19] L. Hörmander, Implicit function theorems, Stanford university lecture notes, 1977.

[20] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal. 58 (1975), 181-205. | MR | Zbl

[21] P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537-566. | MR | Zbl

[22] J.-L. Lions & E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 2, Travaux et Recherches Mathématiques, No. 18, Dunod, 1968. | Zbl

[23] A. Majda, The existence of multidimensional shock fronts, Mem. Amer. Math. Soc. 43 (1983), 93. | MR | Zbl

[24] A. Majda, The stability of multidimensional shock fronts, Mem. Amer. Math. Soc. 41 (1983), 95. | MR | Zbl

[25] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences 53, Springer, 1984. | MR | Zbl

[26] A. Majda & S. Osher, Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math. 28 (1975), 607-675. | Zbl

[27] G. Métivier, Interaction de deux chocs pour un système de deux lois de conservation, en dimension deux d'espace, Trans. Amer. Math. Soc. 296 (1986), 431-479. | MR | Zbl

[28] G. Métivier, Ondes soniques, J. Math. Pures Appl. 70 (1991), 197-268. | MR | Zbl

[29] G. Métivier, Stability of multidimensional shocks, in Advances in the theory of shock waves, Progr. Nonlinear Differential Equations Appl. 47, Birkhäuser, 2001, 25-103. | MR | Zbl

[30] J. W. Miles, On the disturbed motion of a plane vortex sheet, J. Fluid Mech. 4 (1958), 538-552. | MR | Zbl

[31] A. Mokrane, Problèmes mixtes hyperboliques non-linéaires, Thèse, Université de Rennes I, 1987.

[32] A. Morando & P. Trebeschi, Stability of contact discontinuities for the nonisentropic Euler equations in two-space dimensions, preprint, 2007. | Zbl

[33] J. B. Rauch & F. J. I. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc. 189 (1974), 303-318. | Zbl

[34] S. Schochet, The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit, Comm. Math. Phys. 104 (1986), 49-75. | MR | Zbl

[35] P. Secchi, The initial-boundary value problem for linear symmetric hyperbolic systems with characteristic boundary of constant multiplicity, Differential Integral Equations 9 (1996), 671-700. | MR | Zbl

[36] P. Secchi, Well-posedness of characteristic symmetric hyperbolic systems, Arch. Rational Mech. Anal. 134 (1996), 155-197. | MR | Zbl

[37] D. Serre, Systems of conservation laws. 2, Cambridge University Press, 2000, Geometric structures, oscillations, and initial-boundary value problems. | MR | Zbl

[38] T. C. Sideris, Formation of singularities in three-dimensional compressible fluids, Comm. Math. Phys. 101 (1985), 475-485. | MR | Zbl

[39] H. Beirão Da Veiga, On the barotropic motion of compressible perfect fluids, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8 (1981), 317-351. | Numdam | MR | Zbl

  • Morando, Alessandro; Secchi, Paolo; Trakhinin, Yuri; Trebeschi, Paola; Yuan, Difan Well-Posedness of the Two-Dimensional Compressible Plasma-Vacuum Interface Problem, Archive for Rational Mechanics and Analysis, Volume 248 (2024) no. 4 | DOI:10.1007/s00205-024-02001-y
  • Wang, Yanjin; Xin, Zhouping Existence of multi‐dimensional contact discontinuities for the ideal compressible magnetohydrodynamics, Communications on Pure and Applied Mathematics, Volume 77 (2024) no. 1, p. 583 | DOI:10.1002/cpa.22148
  • Alazard, Thomas The Water-Wave Equations in Eulerian Coordinates, Free Boundary Problems in Fluid Dynamics, Volume 54 (2024), p. 1 | DOI:10.1007/978-3-031-60452-2_1
  • Morando, Alessandro; Secchi, Paolo; Trebeschi, Paola; Yuan, Difan Local Existence of 2D Compressible Current-Vortex Sheets, Hyperbolic Problems: Theory, Numerics, Applications. Volume I, Volume 34 (2024), p. 319 | DOI:10.1007/978-3-031-55260-1_24
  • Xiao, Feng Local Well-Posedness of the Nonlinear Wave System Near a Space Corner of Right Angle, Journal of Dynamics and Differential Equations (2024) | DOI:10.1007/s10884-024-10386-3
  • Wang, Wei; Zhang, Zhifei; Zhao, Wenbin Nonlinear stability of entropy waves for the Euler equations, Mathematische Annalen, Volume 390 (2024) no. 4, p. 4861 | DOI:10.1007/s00208-024-02880-2
  • Morando, Alessandro; Secchi, Paolo; Trebeschi, Paola; Yuan, Difan On the Existence and Stability of 2D Compressible Current-Vortex Sheets, Nonlinear Differential Equations and Applications, Volume 7 (2024), p. 175 | DOI:10.1007/978-3-031-53740-0_10
  • Morando, Alessandro; Secchi, Paolo; Trebeschi, Paola; Yuan, Difan Nonlinear Stability and Existence of Two-Dimensional Compressible Current-Vortex Sheets, Archive for Rational Mechanics and Analysis, Volume 247 (2023) no. 3 | DOI:10.1007/s00205-023-01865-w
  • Secchi, Paolo; Trakhinin, Yuri; Wang, Tao On vacuum free boundary problems in ideal compressible magnetohydrodynamics, Bulletin of the London Mathematical Society, Volume 55 (2023) no. 5, p. 2087 | DOI:10.1112/blms.12913
  • Chen, Robin Ming; Huang, Feimin; Wang, Dehua; Yuan, Difan On the Vortex Sheets of Compressible Flows, Communications on Applied Mathematics and Computation, Volume 5 (2023) no. 3, p. 967 | DOI:10.1007/s42967-022-00191-4
  • Chen, Robin Ming; Huang, Feimin; Wang, Dehua; Yuan, Difan Stabilization effect of elasticity on three-dimensional compressible vortex sheets, Journal de Mathématiques Pures et Appliquées, Volume 172 (2023), p. 105 | DOI:10.1016/j.matpur.2023.01.005
  • Fang, Beixiang; Xiang, Wei; Xiao, Feng Local well-posedness of unsteady potential flows near a space corner of right angle, Journal of Differential Equations, Volume 347 (2023), p. 104 | DOI:10.1016/j.jde.2022.11.042
  • Li, Dening; Zhang, Qingtian Double shock solution for three-dimensional irrotational isentropic flow, Journal of Hyperbolic Differential Equations, Volume 20 (2023) no. 04, p. 835 | DOI:10.1142/s0219891623500236
  • Fang, Beixiang; Huang, Feimin; Xiang, Wei; Xiao, Feng Persistence of the steady planar normal shock structure in 3‐D unsteady potential flows, Journal of the London Mathematical Society, Volume 107 (2023) no. 5, p. 1692 | DOI:10.1112/jlms.12723
  • Lai, Ning-An; Xiang, Wei; Zhou, Yi Global Instability of Multi-Dimensional Plane Shocks for Isothermal Flow, Acta Mathematica Scientia, Volume 42 (2022) no. 3, p. 887 | DOI:10.1007/s10473-022-0305-7
  • Huang, Feimin; Xu, Lingda; Yuan, Qian Asymptotic stability of planar rarefaction waves under periodic perturbations for 3-d Navier-Stokes equations, Advances in Mathematics, Volume 404 (2022), p. 108452 | DOI:10.1016/j.aim.2022.108452
  • Trakhinin, Yuri; Wang, Tao Nonlinear Stability of MHD Contact Discontinuities with Surface Tension, Archive for Rational Mechanics and Analysis, Volume 243 (2022) no. 2, p. 1091 | DOI:10.1007/s00205-021-01740-6
  • Plaza, Ramón G.; Vallejo, Fabio Stability of Classical Shock Fronts for Compressible Hyperelastic Materials of Hadamard Type, Archive for Rational Mechanics and Analysis, Volume 243 (2022) no. 2, p. 943 | DOI:10.1007/s00205-021-01751-3
  • Secchi, Paolo; Yuan, Yuan Weakly nonlinear surface waves on the plasma–vacuum interface, Journal de Mathématiques Pures et Appliquées, Volume 163 (2022), p. 132 | DOI:10.1016/j.matpur.2022.05.003
  • Trakhinin, Yuri On weak stability of shock waves in 2D compressible elastodynamics, Journal of Hyperbolic Differential Equations, Volume 19 (2022) no. 01, p. 157 | DOI:10.1142/s0219891622500035
  • Trakhinin, Yuri; Wang, Tao Well-posedness for the free-boundary ideal compressible magnetohydrodynamic equations with surface tension, Mathematische Annalen, Volume 383 (2022) no. 1-2, p. 761 | DOI:10.1007/s00208-021-02180-z
  • Kilque, Corentin Transverse instability of high frequency weakly stable quasilinear boundary value problems, Quarterly of Applied Mathematics, Volume 81 (2022) no. 4, p. 633 | DOI:10.1090/qam/1637
  • Trakhinin, Yuri; Wang, Tao Well-Posedness for Moving Interfaces with Surface Tension in Ideal Compressible MHD, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 6, p. 5888 | DOI:10.1137/22m1488429
  • Trakhinin, Yuri; Wang, Tao Well-posedness of Free Boundary Problem in Non-relativistic and Relativistic Ideal Compressible Magnetohydrodynamics, Archive for Rational Mechanics and Analysis, Volume 239 (2021) no. 2, p. 1131 | DOI:10.1007/s00205-020-01592-6
  • Chen, Robin Ming; Huang, Feimin; Wang, Dehua; Yuan, Difan On the stability of two-dimensional nonisentropic elastic vortex sheets, Communications on Pure Applied Analysis, Volume 20 (2021) no. 7-8, p. 2519 | DOI:10.3934/cpaa.2021083
  • Chen, Gui-Qiang G.; Secchi, Paolo; Wang, Tao Stability of Multidimensional Thermoelastic Contact Discontinuities, Archive for Rational Mechanics and Analysis, Volume 237 (2020) no. 3, p. 1271 | DOI:10.1007/s00205-020-01531-5
  • Ramani, Raaghav; Shkoller, Steve A multiscale model for Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Journal of Computational Physics, Volume 405 (2020), p. 109177 | DOI:10.1016/j.jcp.2019.109177
  • Chen, Robin Ming; Hu, Jilong; Wang, Dehua; Wang, Tao; Yuan, Difan Nonlinear stability and existence of compressible vortex sheets in 2D elastodynamics, Journal of Differential Equations, Volume 269 (2020) no. 9, p. 6899 | DOI:10.1016/j.jde.2020.05.003
  • Secchi, Paolo Anisotropic regularity of linearized compressible vortex sheets, Journal of Hyperbolic Differential Equations, Volume 17 (2020) no. 03, p. 443 | DOI:10.1142/s0219891620500113
  • Morando, Alessandro; Trakhinin, Yuri; Trebeschi, Paola Structural stability of shock waves in 2D compressible elastodynamics, Mathematische Annalen, Volume 378 (2020) no. 3-4, p. 1471 | DOI:10.1007/s00208-019-01920-6
  • Morando, A.; Secchi, P.; Trebeschi, P. On the evolution equation of compressible vortex sheets, Mathematische Nachrichten, Volume 293 (2020) no. 5, p. 945 | DOI:10.1002/mana.201800162
  • Fang, Beixiang; Xiang, Wei; Xiao, Feng Persistence of the Steady Normal Shock Structure for the Unsteady Potential Flow, SIAM Journal on Mathematical Analysis, Volume 52 (2020) no. 6, p. 6033 | DOI:10.1137/20m1315439
  • Chen, Gui-Qiang G.; Secchi, Paolo; Wang, Tao Nonlinear Stability of Relativistic Vortex Sheets in Three-Dimensional Minkowski Spacetime, Archive for Rational Mechanics and Analysis, Volume 232 (2019) no. 2, p. 591 | DOI:10.1007/s00205-018-1330-5
  • Morando, Alessandro; Trebeschi, Paola; Wang, Tao Two-dimensional vortex sheets for the nonisentropic Euler equations: Nonlinear stability, Journal of Differential Equations, Volume 266 (2019) no. 9, p. 5397 | DOI:10.1016/j.jde.2018.10.029
  • Li, Dening On the initial-boundary value problem for the Euler equations in presence of a rarefaction wave, Journal of Hyperbolic Differential Equations, Volume 16 (2019) no. 02, p. 271 | DOI:10.1142/s0219891619500103
  • Ruan, Lizhi; Trakhinin, Yuri Elementary symmetrization of inviscid two-fluid flow equations giving a number of instant results, Physica D: Nonlinear Phenomena, Volume 391 (2019), p. 66 | DOI:10.1016/j.physd.2018.11.008
  • Qu, Aifang; Xiang, Wei Three-Dimensional Steady Supersonic Euler Flow Past a Concave Cornered Wedge with Lower Pressure at the Downstream, Archive for Rational Mechanics and Analysis, Volume 228 (2018) no. 2, p. 431 | DOI:10.1007/s00205-017-1197-x
  • Morando, Alessandro; Trakhinin, Yuri; Trebeschi, Paola Local Existence of MHD Contact Discontinuities, Archive for Rational Mechanics and Analysis, Volume 228 (2018) no. 2, p. 691 | DOI:10.1007/s00205-017-1203-3
  • Sun, Yongzhong; Wang, Wei; Zhang, Zhifei Nonlinear Stability of the Current‐Vortex Sheet to the Incompressible MHD Equations, Communications on Pure and Applied Mathematics, Volume 71 (2018) no. 2, p. 356 | DOI:10.1002/cpa.21710
  • Trakhinin, Yuri Well-posedness of the free boundary problem in compressible elastodynamics, Journal of Differential Equations, Volume 264 (2018) no. 3, p. 1661 | DOI:10.1016/j.jde.2017.10.005
  • Hu, Dian; Sheng, Wancheng Stability of E-H type regular shock refraction, Journal of Mathematical Physics, Volume 59 (2018) no. 11 | DOI:10.1063/1.5054686
  • Mandrik, N. V. A Priori Tame Estimates in Sobolev Spaces for the Plasma–Vacuum Interface Problem, Journal of Mathematical Sciences, Volume 230 (2018) no. 1, p. 118 | DOI:10.1007/s10958-018-3732-1
  • Chen, Robin Ming; Hu, Jilong; Wang, Dehua Linear stability of compressible vortex sheets in two-dimensional elastodynamics, Advances in Mathematics, Volume 311 (2017), p. 18 | DOI:10.1016/j.aim.2017.02.014
  • Chen, ShuXing; Li, DeNing Generalised Riemann problem for Euler system, Science China Mathematics, Volume 60 (2017) no. 4, p. 581 | DOI:10.1007/s11425-016-0437-x
  • Morando, Alessandro; Trakhinin, Yuri; Trebeschi, Paola On local existence of MHD contact discontinuities, Discrete Continuous Dynamical Systems - S, Volume 9 (2016) no. 1, p. 289 | DOI:10.3934/dcdss.2016.9.289
  • Beirão da Veiga, Hugo; Morando, Alessandro; Trebeschi, Paola The research of Paolo Secchi, Discrete Continuous Dynamical Systems - S, Volume 9 (2016) no. 1, p. iii | DOI:10.3934/dcdss.2016.9.1iii
  • Secchi, Paolo On the Nash-Moser Iteration Technique, Recent Developments of Mathematical Fluid Mechanics (2016), p. 443 | DOI:10.1007/978-3-0348-0939-9_23
  • Trakhinin, Yuri On well-posedness of the plasma-vacuum interface problem: the case of non-elliptic interface symbol, Communications on Pure and Applied Analysis, Volume 15 (2015) no. 4, p. 1371 | DOI:10.3934/cpaa.2016.15.1371
  • Morando, Alessandro; Trakhinin, Yuri; Trebeschi, Paola Well-posedness of the linearized problem for MHD contact discontinuities, Journal of Differential Equations, Volume 258 (2015) no. 7, p. 2531 | DOI:10.1016/j.jde.2014.12.018
  • Li, Dening Compatibility of jump Cauchy data for non-isentropic Euler equations, Journal of Mathematical Analysis and Applications, Volume 425 (2015) no. 1, p. 565 | DOI:10.1016/j.jmaa.2014.12.053
  • Sueur, Franck Viscous profiles of vortex patches, Journal of the Institute of Mathematics of Jussieu, Volume 14 (2015) no. 1, p. 1 | DOI:10.1017/s1474748013000285
  • Wang, Ya-Guang; Yu, Fang Structural Stability of Supersonic Contact Discontinuities in Three-Dimensional Compressible Steady Flows, SIAM Journal on Mathematical Analysis, Volume 47 (2015) no. 2, p. 1291 | DOI:10.1137/140976169
  • Wang, Ya-Guang; Yuan, Hairong Weak stability of transonic contact discontinuities in three-dimensional steady non-isentropic compressible Euler flows, Zeitschrift für angewandte Mathematik und Physik, Volume 66 (2015) no. 2, p. 341 | DOI:10.1007/s00033-014-0404-y
  • Chen, Shuxing; Li, Dening Solutions of the Cauchy problem for the 2-D Euler system with fan-shaped structure, Applied Mathematics Letters, Volume 32 (2014), p. 19 | DOI:10.1016/j.aml.2014.02.003
  • Secchi, Paolo; D'Abbicco, Marcello; Catania, Davide Stability of the linearized MHD-Maxwell free interface problem, Communications on Pure and Applied Analysis, Volume 13 (2014) no. 6, p. 2407 | DOI:10.3934/cpaa.2014.13.2407
  • Stevens, Ben The Nash-Moser Iteration Technique with Application to Characteristic Free-Boundary Problems, Hyperbolic Conservation Laws and Related Analysis with Applications, Volume 49 (2014), p. 311 | DOI:10.1007/978-3-642-39007-4_13
  • Chen, Shuxing; Li, Dening Cauchy problem with general discontinuous initial data along a smooth curve for 2-d Euler system, Journal of Differential Equations, Volume 257 (2014) no. 6, p. 1939 | DOI:10.1016/j.jde.2014.05.027
  • Morando, Alessandro; Secchi, Paolo; Trebeschi, Paola On a Priori Energy Estimates for Characteristic Boundary Value Problems, Journal of Fourier Analysis and Applications, Volume 20 (2014) no. 4, p. 816 | DOI:10.1007/s00041-014-9335-4
  • Wang, Ya-Guang; Yu, Fang Nonlinear geometric optics for contact discontinuities in three dimensional compressible isentropic steady flows, Journal of Mathematical Physics, Volume 55 (2014) no. 9 | DOI:10.1063/1.4895759
  • Secchi, Paolo; Trakhinin, Yuri Well-posedness of the plasma–vacuum interface problem, Nonlinearity, Volume 27 (2014) no. 1, p. 105 | DOI:10.1088/0951-7715/27/1/105
  • Morando, Alessandro; Trakhinin, Yuri; Trebeschi, Paola Well-posedness of the linearized plasma-vacuum interface problem in ideal incompressible MHD, Quarterly of Applied Mathematics, Volume 72 (2014) no. 3, p. 549 | DOI:10.1090/s0033-569x-2014-01346-7
  • Wang, Ya-Guang; Yu, Fang Stabilization Effect of Magnetic Fields on Two-Dimensional Compressible Current-Vortex Sheets, Archive for Rational Mechanics and Analysis, Volume 208 (2013) no. 2, p. 341 | DOI:10.1007/s00205-012-0601-9
  • Blokhin, A. M.; Bychkov, A. S.; Myakishev, V. O. Numerical analysis of feasibility of the neutral stability conditions for shock waves in the problem of a van der waals gas flow past a wedge, Journal of Applied and Industrial Mathematics, Volume 7 (2013) no. 2, p. 131 | DOI:10.1134/s1990478913020026
  • Wang, Ya-Guang; Yu, Fang Stability of contact discontinuities in three-dimensional compressible steady flows, Journal of Differential Equations, Volume 255 (2013) no. 6, p. 1278 | DOI:10.1016/j.jde.2013.05.014
  • Coutand, Daniel; Hole, Jason; Shkoller, Steve Well-Posedness of the Free-Boundary Compressible 3-D Euler Equations with Surface Tension and the Zero Surface Tension Limit, SIAM Journal on Mathematical Analysis, Volume 45 (2013) no. 6, p. 3690 | DOI:10.1137/120888697
  • Coutand, Daniel; Shkoller, Steve Well-Posedness in Smooth Function Spaces for the Moving-Boundary Three-Dimensional Compressible Euler Equations in Physical Vacuum, Archive for Rational Mechanics and Analysis, Volume 206 (2012) no. 2, p. 515 | DOI:10.1007/s00205-012-0536-1
  • TRAKHININ, YURI STABILITY OF RELATIVISTIC PLASMA-VACUUM INTERFACES, Journal of Hyperbolic Differential Equations, Volume 09 (2012) no. 03, p. 469 | DOI:10.1142/s0219891612500154
  • Morando, Alessandro; Trebeschi, Paola Regularity of weakly well posed non characteristic boundary value problems, Journal of Pseudo-Differential Operators and Applications, Volume 3 (2012) no. 4, p. 421 | DOI:10.1007/s11868-012-0055-8
  • Chen, Gui-Qiang; Wang, Ya-Guang Characteristic Discontinuities and Free Boundary Problems for Hyperbolic Conservation Laws, Nonlinear Partial Differential Equations, Volume 7 (2012), p. 53 | DOI:10.1007/978-3-642-25361-4_4
  • MORANDO, ALESSANDRO; SECCHI, PAOLO REGULARITY OF WEAKLY WELL POSED HYPERBOLIC MIXED PROBLEMS WITH CHARACTERISTIC BOUNDARY, Journal of Hyperbolic Differential Equations, Volume 08 (2011) no. 01, p. 37 | DOI:10.1142/s021989161100238x
  • Trakhinin, Yuri Local existence for the free boundary problem for nonrelativistic and Relativistic compressible Euler equations with a vacuum boundary condition, Communications on Pure and Applied Mathematics, Volume 62 (2009) no. 11, p. 1551 | DOI:10.1002/cpa.20282
  • MORANDO, ALESSANDRO; SECCHI, PAOLO; TREBESCHI, PAOLA REGULARITY OF SOLUTIONS TO CHARACTERISTIC INITIAL-BOUNDARY VALUE PROBLEMS FOR SYMMETRIZABLE SYSTEMS, Journal of Hyperbolic Differential Equations, Volume 06 (2009) no. 04, p. 753 | DOI:10.1142/s021989160900199x
  • Ilin, Konstantin; Trakhinin, Yuri On stability of Alfvén discontinuities, Mathematical Methods in the Applied Sciences, Volume 32 (2009) no. 3, p. 307 | DOI:10.1002/mma.1039
  • Morando, Alessandro; Trakhinin, Yuri; Trebeschi, Paola Stability of incompressible current-vortex sheets, Journal of Mathematical Analysis and Applications, Volume 347 (2008) no. 2, p. 502 | DOI:10.1016/j.jmaa.2008.06.002

Cité par 74 documents. Sources : Crossref