[Actions holomorphes, exemples de Kummer et programme de Zimmer]
Nous classons les variétés compactes kählériennes de dimension munies d’une action d’un réseau dans un groupe de Lie réel presque simple de rang . Ceci complète le programme de Zimmer dans ce cadre, et caractérise certains tores complexes compacts par des propriétés de leur groupe d’automorphismes.
We classify compact Kähler manifolds of dimension on which acts a lattice of an almost simple real Lie group of rank . This provides a new line in the so-called Zimmer program, and characterizes certain complex tori as compact Kähler manifolds with large automorphisms groups.
Keywords: lattices, superrigidity, complex tori, automorphism groups, Hodge theory, invariant cones, holomorphic dynamics
Mot clés : réseaux, super-rigidité, tores complexes, groupes d'automorphismes, théorie de Hodge, cônes invariants, dynamique holomorphe
@article{ASENS_2012_4_45_3_447_0, author = {Cantat, Serge and Zeghib, Abdelghani}, title = {Holomorphic actions, {Kummer} examples, and {Zimmer} program}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {447--489}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 45}, number = {3}, year = {2012}, doi = {10.24033/asens.2170}, mrnumber = {3014483}, zbl = {1280.22015}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2170/} }
TY - JOUR AU - Cantat, Serge AU - Zeghib, Abdelghani TI - Holomorphic actions, Kummer examples, and Zimmer program JO - Annales scientifiques de l'École Normale Supérieure PY - 2012 SP - 447 EP - 489 VL - 45 IS - 3 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/asens.2170/ DO - 10.24033/asens.2170 LA - en ID - ASENS_2012_4_45_3_447_0 ER -
%0 Journal Article %A Cantat, Serge %A Zeghib, Abdelghani %T Holomorphic actions, Kummer examples, and Zimmer program %J Annales scientifiques de l'École Normale Supérieure %D 2012 %P 447-489 %V 45 %N 3 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/asens.2170/ %R 10.24033/asens.2170 %G en %F ASENS_2012_4_45_3_447_0
Cantat, Serge; Zeghib, Abdelghani. Holomorphic actions, Kummer examples, and Zimmer program. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 45 (2012) no. 3, pp. 447-489. doi : 10.24033/asens.2170. http://www.numdam.org/articles/10.24033/asens.2170/
[1] Semigroups containing proximal linear maps, Israel J. Math. 91 (1995), 1-30. | MR | Zbl
, & ,[2] Lie group actions in complex analysis, Aspects of Mathematics, E27, Friedr. Vieweg & Sohn, 1995. | MR | Zbl
,[3] Kazhdan's property (T), New Mathematical Monographs 11, Cambridge Univ. Press, 2008. | MR | Zbl
, & ,[4] Sous-groupes discrets des groupes de Lie, in European Summer School in Group Theory, 1997, 1-72.
,[5] Automorphismes des cônes convexes, Invent. Math. 141 (2000), 149-193. | MR | Zbl
,[6] Réseaux des groupes de Lie, cours de Master 2, Université Paris VI, p. 1-72, 2008.
,[7] Regularity of plurisubharmonic upper envelopes in big cohomology classes, in Perspectives in analysis, geometry, and topology, Progr. Math. 296, Birkhäuser, 2012, 39-66. | MR | Zbl
& ,[8] Einstein manifolds, Classics in Mathematics, Springer, 2008. | MR | Zbl
,[9] Complex tori, Progress in Math. 177, Birkhäuser, 1999. | MR | Zbl
& ,[10] Complex Abelian varieties, 2nd éd., Grund. Math. Wiss. 302, Springer, 2004. | MR | Zbl
& ,[11] Locally compact groups of differentiable transformations, Ann. of Math. 47 (1946), 639-653. | MR | Zbl
& ,[12] Les bouts des espaces homogènes de groupes de Lie, Ann. of Math. 58 (1953), 443-457. | MR | Zbl
,[13] Orbifoldes à première classe de Chern nulle, in The Fano Conference, Univ. Torino, Turin, 2004, 339-351. | Zbl
,[14] Cycle spaces, in Several complex variables, VII, Encyclopaedia Math. Sci. 74, Springer, 1994, 319-349. | Zbl
& ,[15] Sur la dynamique du groupe d’automorphismes des surfaces , Transform. Groups 6 (2001), 201-214. | Zbl
,[16] Version kählérienne d'une conjecture de Robert J. Zimmer, Ann. Sci. École Norm. Sup. 37 (2004), 759-768. | Numdam | Zbl
,[17] Caractérisation des exemples de Lattès et de Kummer, Compos. Math. 144 (2008), 1235-1270. | Zbl
,[18] Sur les groupes de transformations birationnelles des surfaces, Ann. of Math. 174 (2011), 299-340. | Zbl
,[19] Holomorphic actions of higer rank lattices in dimension three, preprint, 2009.
& ,[20] Holomorphic actions, Kummer examples, and Zimmer program, preprint, 2010. | Numdam | Zbl
& ,[21] Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. France (N.S.) 19 (1985). | Numdam | Zbl
,[22] Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1 (1992), 361-409. | Zbl
,[23] Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. 159 (2004), 1247-1274. | Zbl
& ,[24] Comparison of dynamical degrees for semi-conjugate meromorphic maps, Comment. Math. Helv. 86 (2011), 817-840. | MR | Zbl
& ,[25] Groupes commutatifs d'automorphismes d'une variété kählérienne compacte, Duke Math. J. 123 (2004), 311-328. | MR | Zbl
& ,[26] Coble rational surfaces, Amer. J. Math. 123 (2001), 79-114. | MR | Zbl
& ,[27] Groups acting on manifolds: around the Zimmer program, in Geometry, rigidity, and group actions, Chicago Lectures in Math., Univ. Chicago Press, 2011, 72-157. | MR | Zbl
,[28] On automorphism groups of compact Kähler manifolds, Invent. Math. 44 (1978), 225-258. | MR | Zbl
,[29] Introduction to toric varieties, Annals of Math. Studies 131, Princeton Univ. Press, 1993. | MR | Zbl
,[30] Representation theory, Graduate Texts in Math. 129, Springer, 1991. | MR | Zbl
& ,[31] Actions de réseaux sur le cercle, Invent. Math. 137 (1999), 199-231. | MR | Zbl
,[32] Complex homogeneous manifolds with two ends, Michigan Math. J. 28 (1981), 183-198. | MR | Zbl
& ,[33] Discrete subgroups of Lie groups, in Lie groups and Lie algebras. II, Encyclopaedia of Math. Sciences 21, Springer, 2000. | MR | Zbl
, & (éds.),[34] Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331-368. | MR | Zbl
,[35] Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons Inc., 1994. | MR | Zbl
& ,[36] On the entropy of holomorphic maps, Enseign. Math. 49 (2003), 217-235. | MR | Zbl
,[37] The Novikov conjecture for linear groups, Publ. Math. IHÉS 101 (2005), 243-268. | Numdam | MR | Zbl
, & ,[38] La propriété de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque 175 (1989). | Numdam | Zbl
& ,[39] Ample subvarieties of algebraic varieties, Notes written in collaboration with C. Musili. Lecture Notes in Math. 156, Springer, 1970. | MR | Zbl
,[40] Almost-homogeneous Kähler manifolds with hypersurface orbits, Osaka J. Math. 19 (1982), 763-786. | MR | Zbl
& ,[41] Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan 15, Princeton Univ. Press, 1987. | MR | Zbl
,[42] A theorem of completeness of characteristic systems of complete continuous systems, Amer. J. Math. 81 (1959), 477-500. | MR | Zbl
& ,[43] An analytic action of a semisimple Lie group in a neighborhood of a fixed point is equivalent to a linear one, Funkcional. Anal. i Priložen 1 (1967), 103-104. | MR | Zbl
,[44] Algebra, second éd., Addison-Wesley Publishing Company Advanced Book Program, 1984. | MR | Zbl
,[45] Positivity in algebraic geometry. I and II, Ergebn. Math. Grenzg. 48/49, Springer, 2004. | MR | Zbl
,[46] Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds, in Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975-1977), Lecture Notes in Math. 670, Springer, 1978, 140-186. | MR | Zbl
,[47] Discrete subgroups of semisimple Lie groups, Ergebn. Math. Grenzg. (3) 17, Springer, 1991. | MR | Zbl
,[48] Strong rigidity of locally symmetric spaces, Annals of Math. Studies 78, Princeton Univ. Press, 1973. | MR | Zbl
,[49] Base loci of linear series are numerically determined, Trans. Amer. Math. Soc. 355 (2003), 551-566 (electronic). | MR | Zbl
,[50] Lie groups and Lie algebras, III, Encyclopaedia of Math. Sciences 41, Springer, 1994. | MR | Zbl
& (éds.),[51] Cartan subgroups and lattices in semi-simple groups, Ann. of Math. 96 (1972), 296-317. | MR | Zbl
& ,[52] Two-dimensional complex tori with multiplication by , Arch. Math. (Basel) 72 (1999), 278-281. | MR | Zbl
,[53] On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 359-363. | Zbl
,[54] On complex tori with many endomorphisms, Tsukuba J. Math. 8 (1984), 297-318. | Zbl
,[55] Mixed Hodge structure on the vanishing cohomology, in Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, 525-563. | Zbl
,[56] Infinitesimal computations in topology, Publ. Math. I.H.É.S. 47 (1977), 269-331 (1978). | Numdam | Zbl
,[57] Quasi-homogeneous cones, Mat. Zametki 1 (1967), 347-354. | Zbl
& ,[58] Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés 10, Soc. Math. France, 2002. | Zbl
,[59] A remark on the hard Lefschetz theorem for Kähler orbifolds, Proc. Amer. Math. Soc. 137 (2009), 2497-2501. | Zbl
& ,[60] Spaces of constant curvature, fifth éd., Publish or Perish Inc., 1984. | Zbl
,[61] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), 339-411. | Zbl
,[62] A theorem of Tits type for compact Kähler manifolds, Invent. Math. 176 (2009), 449-459. | Zbl
,[63] Kazhdan groups acting on compact manifolds, Invent. Math. 75 (1984), 425-436. | MR | Zbl
,[64] Actions of semisimple groups and discrete subgroups, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., 1987, 1247-1258. | MR | Zbl
,[65] Lattices in semisimple groups and invariant geometric structures on compact manifolds, in Discrete groups in geometry and analysis (New Haven, Conn., 1984), Progr. Math. 67, Birkhäuser, 1987, 152-210. | MR | Zbl
,Cité par Sources :