@article{ASENS_2004_4_37_5_759_0, author = {Cantat, Serge}, title = {Version k\"ahl\'erienne d'une conjecture de {Robert} {J.} {Zimmer}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {759--768}, publisher = {Elsevier}, volume = {4e s{\'e}rie, 37}, number = {5}, year = {2004}, doi = {10.1016/j.ansens.2004.04.003}, mrnumber = {2103473}, zbl = {1072.22006}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/j.ansens.2004.04.003/} }
TY - JOUR AU - Cantat, Serge TI - Version kählérienne d'une conjecture de Robert J. Zimmer JO - Annales scientifiques de l'École Normale Supérieure PY - 2004 SP - 759 EP - 768 VL - 37 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.ansens.2004.04.003/ DO - 10.1016/j.ansens.2004.04.003 LA - fr ID - ASENS_2004_4_37_5_759_0 ER -
%0 Journal Article %A Cantat, Serge %T Version kählérienne d'une conjecture de Robert J. Zimmer %J Annales scientifiques de l'École Normale Supérieure %D 2004 %P 759-768 %V 37 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.ansens.2004.04.003/ %R 10.1016/j.ansens.2004.04.003 %G fr %F ASENS_2004_4_37_5_759_0
Cantat, Serge. Version kählérienne d'une conjecture de Robert J. Zimmer. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 37 (2004) no. 5, pp. 759-768. doi : 10.1016/j.ansens.2004.04.003. http://www.numdam.org/articles/10.1016/j.ansens.2004.04.003/
[1] Automorphisms of Enriques surfaces, Invent. Math. 73 (3) (1983) 383-411. | EuDML | MR | Zbl
, ,[2] Variétés kählériennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (4) (1984) 755-782, 1983. | MR | Zbl
,[3] Riemannian holonomy and algebric geometry, preprint, math.AG/9902110, pp. 1-27. | Zbl
,[4] Sous-groupes discrets des groupes de Lie, in: European Summer School in Group Theory, 1997, pp. 1-72.
,[5] Locally compact groups of differentiable transformations, Ann. of Math. (2) 47 (1946) 639-653. | MR | Zbl
, ,[6] The local linearization problem for smooth -actions, Enseign. Math. (2) 43 (1-2) (1997) 133-171. | MR | Zbl
, ,[7] Dynamique des automorphismes des surfaces K3, Acta Math. 187 (1) (2001) 1-57. | MR | Zbl
,[8] La propriété (T) de Kazhdan pour les groupes localement compacts avec un appendice de Marc Burger, Astérisque 175 (1989) 158, With an appendix by M. Burger. | Numdam | MR | Zbl
, ,[9] Groupes commutatifs d'automorphismes d'une variété kählérienne compacte, Duke Math. J. 123 (2004) 311-328. | MR | Zbl
, ,[10] Actions de réseaux sur le cercle, Invent. Math. 137 (1) (1999) 199-231. | MR | Zbl
,[11] Rational G-surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1) (1980) 110-144, 239. | MR | Zbl
,[12] Convex sets and Kähler manifolds, in: Advances in Differential Geometry and Topology, World Sci. Publishing, Teaneck, NJ, 1990, pp. 1-38. | MR | Zbl
,[13] Diophantine Geometry, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000, An introduction. | MR | Zbl
, ,[14] Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds, in: Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975-1977), Springer, Berlin, 1978, pp. 140-186. | MR | Zbl
,[15] Discrete Subgroups of Semisimple Lie Groups, in: Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 17, Springer-Verlag, Berlin, 1991. | MR | Zbl
,[16] Cartan subgroups and lattices in semi-simple groups, Ann. of Math. 2 96 (1972) 296-317. | MR | Zbl
, ,[17] Discrete subgroups of Lie groups, in: Lie Groups and Lie Algebras, II, Encyclopaedia Math. Sci., vol. 21, Springer, Berlin, 2000, pp. 1-123, 217-223. [MR 90c:22036]. | MR | Zbl
, , ,[18] Actions of semisimple groups and discrete subgroups, in: Proceedings of the International Congress of Mathematicians, vols. 1, 2, (Berkeley, CA, 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 1247-1258. | MR | Zbl
,[19] Lattices in semisimple groups and invariant geometric structures on compact manifolds, in: Discrete Groups in Geometry and Analysis (New Haven, CT, 1984), Progr. Math., vol. 67, Birkhäuser Boston, Boston, MA, 1987, pp. 152-210. | MR | Zbl
,Cité par Sources :