Large deviations for Brownian motion in a random potential
ESAIM: Probability and Statistics, Tome 24 (2020), pp. 374-398.

A quenched large deviation principle for Brownian motion in a stationary potential is proved. As the proofs are based on a method developed by Sznitman [Comm. Pure Appl. Math. 47 (1994) 1655–1688] for Brownian motion among obstacles with compact support no regularity conditions on the potential is needed. In particular, the sufficient conditions are verified by potentials with polynomially decaying correlations such as the classical potentials studied by Pastur [Teoret. Mat. Fiz. 32 (1977) 88–95] and Fukushima [J. Stat. Phys. 133 (2008) 639–657] and the potentials recently introduced by Lacoin [Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 1010–1028; 1029–1048].

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ps/2020007
Classification : 82B41, 60K37
Mots-clés : Brownian motion, long-range random potential, Lyapunov exponents, shape theorem, large deviations
@article{PS_2020__24_1_374_0,
     author = {Boivin, Daniel and L\^e, Thi Thu Hien},
     title = {Large deviations for {Brownian} motion in a random potential},
     journal = {ESAIM: Probability and Statistics},
     pages = {374--398},
     publisher = {EDP-Sciences},
     volume = {24},
     year = {2020},
     doi = {10.1051/ps/2020007},
     mrnumber = {4153636},
     zbl = {1455.82007},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2020007/}
}
TY  - JOUR
AU  - Boivin, Daniel
AU  - Lê, Thi Thu Hien
TI  - Large deviations for Brownian motion in a random potential
JO  - ESAIM: Probability and Statistics
PY  - 2020
SP  - 374
EP  - 398
VL  - 24
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2020007/
DO  - 10.1051/ps/2020007
LA  - en
ID  - PS_2020__24_1_374_0
ER  - 
%0 Journal Article
%A Boivin, Daniel
%A Lê, Thi Thu Hien
%T Large deviations for Brownian motion in a random potential
%J ESAIM: Probability and Statistics
%D 2020
%P 374-398
%V 24
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2020007/
%R 10.1051/ps/2020007
%G en
%F PS_2020__24_1_374_0
Boivin, Daniel; Lê, Thi Thu Hien. Large deviations for Brownian motion in a random potential. ESAIM: Probability and Statistics, Tome 24 (2020), pp. 374-398. doi : 10.1051/ps/2020007. http://www.numdam.org/articles/10.1051/ps/2020007/

[1] S.N. Armstrong and H.V. Tran, Stochastic homogenization of viscous Hamilton-Jacobi equations and applications. Anal. Partial Differ. Equ. 7 (2014) 1969–2007. | MR | Zbl

[2] M. Björklund, The asymptotic shape theorem for generalized first passage percolation. Ann. Probab. 38 (2010) 632–660. | DOI | MR | Zbl

[3] D. Boivin and Y. Derriennic, The ergodic theorem for additive cocycles of $$ or $$. Ergodic Theory Dyn. Syst. 11 (1991) 19–39. | DOI | MR | Zbl

[4] D. Boivin, First passage percolation: the stationary case. Probab. Theory Related Fields 86 (1990) 491–499. | DOI | MR | Zbl

[5] A. Braides and A. Piatnitski, Homogenization of surface and length energies for spin systems. J. Funct. Anal. 264 (2013) 1296–1328. | DOI | MR | Zbl

[6] M. Broise, Y. Déniel and Y. Derriennic, Réarrangement, inégalités maximales et théorèmes ergodiques fractionnaires. Ann. Inst. Fourier (Grenoble) 39 (1989) 689–714. | DOI | Numdam | MR | Zbl

[7] X. Chen, Quenched asymptotics for Brownian motion of renormalized Poisson potential and for the related parabolic Anderson models. Ann. Probab. 40 (2012) 1436–1482. | DOI | MR | Zbl

[8] X. Chen and A.M. Kulik, Brownian motion and parabolic Anderson model in a renormalized Poisson potential. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 631–660. | DOI | Numdam | MR | Zbl

[9] K.L. Chung and Z. Zhao, From Brownian motion to Schroödinger’s equation. Springer-Verlag, Berlin (1995). | DOI | MR | Zbl

[10] J.T. Cox and R. Durrett, Some limit theorems for percolation processes with necessary and sufficient conditions. Ann. Probab. (1981) 583–603. | MR | Zbl

[11] E.B. Davies, Heat kernels and spectral theory. Cambridge University Press, Cambridge (1989). | DOI | MR | Zbl

[12] J.-D. Deuschel and D.W. Stroock, Large deviations. Academic Press, Inc., Boston, MA (1989). | MR | Zbl

[13] M.D. Donsker and S.R.S. Varadhan, Asymptotic evaluation of certain Wiener integrals for large time, in Functional integration and its applications (Proc. Internat. Conf., London, 1974) (1975) 15–33. | MR | Zbl

[14] M. Flury, Large deviations and phase transition for random walks in random nonnegative potentials. Stochastic Process. Appl. 117 (2007) 596–612. | DOI | MR | Zbl

[15] M. Flury, A note on the ballistic limit of random motion in a random potential. Electr. Commun. Probab. 13 (2008) 393–400. | MR | Zbl

[16] R. Fukushima, Asymptotics for the Wiener sausage among Poissonian obstacles. J. Stat. Phys. 133 (2008) 639–657. | DOI | MR | Zbl

[17] R. Fukushima, From the Lifshitz tail to the quenched survival asymptotics in the trapping problem. Electron. Commun. Probab. 14 (2009) 435–446. | DOI | MR | Zbl

[18] R. Fukushima, Second order asymptotics for Brownian motion in a heavy tailed Poissonian potential. Markov Process. Related Fields 17 (2011) 447–482. | MR | Zbl

[19] J.-B. Gouéré, Subcritical regimes in the Poisson Boolean model of continuum percolation. Ann. Probab. 36 (2008) 1209–1220. | MR | Zbl

[20] U. Krengel, Ergodic theorems. Walter de Gruyter & Co., Berlin (1985). | DOI | MR | Zbl

[21] H. Lacoin, Superdiffusivity for Brownian motion in a Poissonian potential with long range correlation: I: Lower bound on the volume exponent. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 1010–1028. | Numdam | MR | Zbl

[22] H. Lacoin, Superdiffusivity for Brownian motion in a Poissonian potential with long range correlation II: Upper bound on the volume exponent. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 1029–1048. | Numdam | MR | Zbl

[23] T.T.H. Lê, Exposants de Lyapunov et potentiel aléatoire. Université de Bretagne Occidentale, France (2015).

[24] R. Meester and R. Roy, Continuum percolation. Cambridge University Press, Cambridge (1996). | DOI | MR | Zbl

[25] J.-C. Mourrat, Lyapunov exponents, shape theorems and large deviations for the random walk in random potential. ALEA Lat. Am.J. Probab. Math. Stat. 9 (2012) 165–209. | MR | Zbl

[26] H. Ôkura, An asymptotic property of a certain Brownian motion expectation for large time. Proc. Jpn. Acad. Ser. A Math. Sci. 57 (1981) 155–159. | DOI | MR | Zbl

[27] L.A. Pastur, The behavior of certain Wiener integrals as t and the density of states of Schrödinger equations with random potential. Teoret. Mat. Fiz. 32 (1977) 88–95. | MR | Zbl

[28] F. Rassoul-Agha, Large deviations for random walks in a mixing random environment and other (non-Markov) random walks. Commun. Pure Appl. Math. 57 (2004) 1178–1196. | DOI | MR | Zbl

[29] F. Rassoul-Agha and T. Seppäläinen, Process-level quenched large deviations for random walk in random environment. Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011) 214–242. | DOI | Numdam | MR | Zbl

[30] F. Rassoul-Agha and T. Seppäläinen, Quenched point-to-point free energy for random walks in random potentials. Probab. Theory Related Fields 158 (2014) 711–750. | DOI | MR | Zbl

[31] F. Rassoul-Agha, T. Seppäläinen and A. Yilmaz, Quenched free energy and large deviations for random walks in random potentials. Comm. Pure Appl. Math. 66 (2013) 202–244. | DOI | MR | Zbl

[32] J.M. Rosenbluth, Quenched large deviation for multidimensional random walk in random environment: A variational formula. Ph.D. thesis, New York University (2006). | MR

[33] J. Rueß, A variational formula for the Lyapunov exponent of Brownian motion in stationary ergodic potential. ALEA Lat. Am. J. Probab. Math. Stat. 11 (2014) 679–709. | MR | Zbl

[34] J. Rueß, Continuity results and estimates for the Lyapunov exponent of Brownian motion in stationary potential. Braz. J. Probab. Stat. 30 (2016) 435–463. | DOI | MR | Zbl

[35] C. Schroeder, Green’s functions for the Schrödinger operator with periodic potential. J. Funct. Anal. 77 (1988) 60–87. | DOI | MR | Zbl

[36] A.-S. Sznitman, Shape theorem, Lyapounov exponents, and large deviations for Brownian motion in a Poissonian potential. Comm. Pure Appl. Math. 47 (1994) 1655–1688. | DOI | MR | Zbl

[37] A.-S. Sznitman, Brownian motion, obstacles and random media. Springer-Verlag, Berlin (1998). | DOI | MR | Zbl

[38] S.R.S. Varadhan, Large deviations for random walks in a random environment. Dedicated to the memory of Jürgen K. Moser. Commun. Pure Appl. Math. 56 (2003) 1222–1245. | DOI | MR | Zbl

[39] M.V. Wüthrich, Scaling identity for crossing Brownian motion in a Poissonian potential. Probab. Theory Related Fields 112 (1998) 299–319. | DOI | MR | Zbl

[40] M.V. Wüthrich, Superdiffusive behavior of two-dimensional Brownian motion in a Poissonian potential. Ann. Probab. 26 (1998) 1000–1015. | DOI | MR | Zbl

[41] M.V. Wüthrich, Fluctuation results for Brownian motion in a Poissonian potential. Ann. Inst. Henri Poincaré Probab. Statist. 34 (1998) 279–308. | DOI | Numdam | MR | Zbl

[42] A. Yilmaz, Quenched large deviations for random walk in a random environment. Commun. Pure Appl. Math. 62 (2009) 1033–1075. | DOI | MR | Zbl

[43] A. Yilmaz, Equality of averaged and quenched large deviations for random walks in random environments in dimensions four and higher. Probab. Theory Related Fields 149 (2011) 463–491. | DOI | MR | Zbl

[44] A. Yilmaz and O. Zeitouni, Differing averaged and quenched large deviations for random walks in random environments in dimensions two and three. Commun. Math. Phys. 300 (2010) 243–271. | DOI | MR | Zbl

[45] M.P.W. Zerner, Directional decay of the Green’s function for a random nonnegative potential on Z$$. Ann. Appl. Probab. 8 (1998) 246–280. | MR | Zbl

Cité par Sources :