Nous considérons une marche aléatoire en environnement aléatoire ergodique. La marche est elliptique et à pas bornés. Nous prouvons un principe de grandes déviations au niveau 3, sous presque tout environnement, avec une fonctionnelle d'action liée à une entropie relative.
We consider a bounded step size random walk in an ergodic random environment with some ellipticity, on an integer lattice of arbitrary dimension. We prove a level 3 large deviation principle, under almost every environment, with rate function related to a relative entropy.
Mots clés : random walk, random environment, RWRE, large deviation, environment process, relative entropy, homogenization
@article{AIHPB_2011__47_1_214_0, author = {Rassoul-Agha, Firas and Sepp\"al\"ainen, Timo}, title = {Process-level quenched large deviations for random walk in random environment}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {214--242}, publisher = {Gauthier-Villars}, volume = {47}, number = {1}, year = {2011}, doi = {10.1214/10-AIHP369}, mrnumber = {2779403}, language = {en}, url = {http://www.numdam.org/articles/10.1214/10-AIHP369/} }
TY - JOUR AU - Rassoul-Agha, Firas AU - Seppäläinen, Timo TI - Process-level quenched large deviations for random walk in random environment JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 214 EP - 242 VL - 47 IS - 1 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/10-AIHP369/ DO - 10.1214/10-AIHP369 LA - en ID - AIHPB_2011__47_1_214_0 ER -
%0 Journal Article %A Rassoul-Agha, Firas %A Seppäläinen, Timo %T Process-level quenched large deviations for random walk in random environment %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 214-242 %V 47 %N 1 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/10-AIHP369/ %R 10.1214/10-AIHP369 %G en %F AIHPB_2011__47_1_214_0
Rassoul-Agha, Firas; Seppäläinen, Timo. Process-level quenched large deviations for random walk in random environment. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 1, pp. 214-242. doi : 10.1214/10-AIHP369. http://www.numdam.org/articles/10.1214/10-AIHP369/
[1] Random walks in quenched i.i.d. space-time random environment are always a.s. diffusive. Probab. Theory Related Fields 129 (2004) 133-156. | MR | Zbl
, and .[2] Quenched, annealed and functional large deviations for one-dimensional random walk in random environment. Probab. Theory Related Fields 118 (2000) 65-114. | MR | Zbl
, and .[3] Large Deviations Techniques and Applications, 2nd edition. Applications of Mathematics 38. Springer, New York, 1998. | MR | Zbl
and .[4] Large Deviations. Fields Institute Monographs 14. Amer. Math. Soc., Providence, RI, 2000. | MR | Zbl
.[5] Large Deviations. Pure and Applied Mathematics 137. Academic Press, Boston, MA, 1989. | MR | Zbl
and .[6] Asymptotic evaluation of certain Markov process expectations for large time. I. Comm. Pure Appl. Math. 28 (1975) 1-47. | MR | Zbl
and .[7] Asymptotic evaluation of certain Markov process expectations for large time. III. Comm. Pure Appl. Math. 29 (1976) 389-461. | MR | Zbl
and .[8] Convex Analysis and Variational Problems, English edition. Classics in Applied Mathematics 28. SIAM, Philadelphia, PA, 1999. | MR | Zbl
and .[9] Gibbs Measures and Phase Transitions. de Gruyter Studies in Mathematics 9. Walter de Gruyter, Berlin, 1988. | MR | Zbl
.[10] Large deviations for a random walk in random environment. Ann. Probab. 22 (1994) 1381-1428. | MR | Zbl
and .[11] A simple proof for König's minimax theorem. Acta Math. Hungar. 63 (1994) 371-374. | MR | Zbl
.[12] Stochastic homogenization of Hamilton-Jacobi-Bellman equations. Comm. Pure Appl. Math. 59 (2006) 1489-1521. | MR | Zbl
, and .[13] The point of view of the particle on the law of large numbers for random walks in a mixing random environment. Ann. Probab. 31 (2003) 1441-1463. | MR | Zbl
.[14] An almost sure invariance principle for random walks in a space-time random environment. Probab. Theory Related Fields 133 (2005) 299-314. | MR | Zbl
and .[15] A course on large deviation theory with an introduction to Gibbs measures. Preprint, 2009. | MR
and .[16] Markov Processes. Structure and Asymptotic Behavior. Springer, New York, 1971. | MR | Zbl
.[17] Quenched large deviations for multidimensional random walk in random environment: A variational formula. Thesis dissertation, New York University, 2006. Available at http://arxiv.org/abs/0804.1444. | MR
.[18] Functional Analysis, 2nd edition. McGraw-Hill, New York, 1991. | MR | Zbl
.[19] Large deviations for lattice systems. I. Parametrized independent fields. Probab. Theory Related Fields 96 (1993) 241-260. | MR | Zbl
.[20] Multidimensional Diffusion Processes. Springer, Berlin, 2006. | MR | Zbl
and .[21] Large Deviations and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics 46. SIAM, Philadelphia, PA, 1984. | MR | Zbl
.[22] Large deviations for random walks in a random environment. Comm. Pure Appl. Math. 56 (2003) 1222-1245. Dedicated to the memory of Jürgen K. Moser. | MR | Zbl
.[23] Large deviations for random walk in a space-time product environment. Ann. Probab. 37 (2009a) 189-205. | MR | Zbl
.[24] Quenched large deviations for random walk in a random environment. Comm. Pure Appl. Math. 62 (2009b) 1033-1075. | MR | Zbl
.[25] Lyapounov exponents and quenched large deviations for multidimensional random walk in random environment. Ann. Probab. 26 (1998) 1446-1476. | MR | Zbl
.Cité par Sources :