After recalling the most classical multiple flow direction algorithms (MFD), we establish their equivalence with a well chosen discretization of Manning–Strickler models for water flow. From this analogy, we derive a new MFD algorithm that remains valid on general, possibly non conforming meshes. We also derive a convergence theory for MFD algorithms based on the Manning–Strickler models. Numerical experiments illustrate the good behavior of the method even on distorted meshes.
Mots-clés : Multiple flow direction algorithm, overland flow, virtual element method, hybrid finite volume, general meshes
@article{M2AN_2020__54_6_1917_0, author = {Coatl\'even, Julien}, title = {Some multiple flow direction algorithms for overland flow on general meshes}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1917--1949}, publisher = {EDP-Sciences}, volume = {54}, number = {6}, year = {2020}, doi = {10.1051/m2an/2020025}, mrnumber = {4150230}, zbl = {1467.65099}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2020025/} }
TY - JOUR AU - Coatléven, Julien TI - Some multiple flow direction algorithms for overland flow on general meshes JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 1917 EP - 1949 VL - 54 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2020025/ DO - 10.1051/m2an/2020025 LA - en ID - M2AN_2020__54_6_1917_0 ER -
%0 Journal Article %A Coatléven, Julien %T Some multiple flow direction algorithms for overland flow on general meshes %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 1917-1949 %V 54 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2020025/ %R 10.1051/m2an/2020025 %G en %F M2AN_2020__54_6_1917_0
Coatléven, Julien. Some multiple flow direction algorithms for overland flow on general meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 1917-1949. doi : 10.1051/m2an/2020025. http://www.numdam.org/articles/10.1051/m2an/2020025/
[1] Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport. Ann. Sci. Ec. Norm. Sup. Ser. 4 3 (1970) 185–233. | Numdam | MR | Zbl
,[2] Existence results in Sobolev spaces for a stationary transport equation. Ricerche Mat. Suppl. XXXVI (1987) 173–184. | MR | Zbl
,[3] The Mathematical Theory of Finite Element Methods, 3rd ed.. Springer (2008). | MR | Zbl
and ,[4] Semi hybrid method for heterogeneous and anisotropic diffusion problems on general meshes. ESAIM: M2AN 49 (2015) 1063–1084. | DOI | Numdam | MR | Zbl
,[5] A virtual volume method for heterogeneous and anisotropic diffusion-reaction problems on general meshes. ESAIM: M2AN 51 (2017) 797–824. | DOI | Numdam | MR | Zbl
,[6] Optimal convergence of the original DG method for the transport-reaction equation on special meshes. SIAM J. Numer. Anal. 46 (2008) 1250–1265. | DOI | MR | Zbl
, and ,[7] Mathematical Aspects of Discontinuous Galerkin Methods. Springer (2012). | DOI | MR | Zbl
and ,[8] Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–547. | DOI | MR | Zbl
and ,[9] Comparison of grid-based algorithms for computing upslope contributing area. Water Resour. Res. 42 (2006) W09416. | DOI
, , and ,[10] Finite volume methods, edited by and . In: Handbook of Numerical Analysis: Techniques of Scientific Computing, Part III. North-Holland, Amsterdam (2000) 713–1020. | MR | Zbl
, and ,[11] A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis. C. R. Math. Acad. Sci. Paris 344 (2007) 403–406. | DOI | MR | Zbl
, and ,[12] Discretisation of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilisation and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. | DOI | MR | Zbl
, and ,[13] Benchmark 3D: the vag scheme. In: Vol. 2 of Springer Proceedings in Mathematics, FVCA6, Prague (2011) 213–222.
, and ,[14] Small-stencil 3D schemes for diffusive flows in porous media. ESAIM: M2AN 46 (2011) 265–290. | DOI | Numdam | MR | Zbl
, and ,[15] Mathematical modeling and analysis of visco-elastic fluids of the oldroyd kind, edited by and . In: Vol. VIII of Handbook of Numerical Analysis: Numerical Methods for Fluids, Part 2. North-Holland, Amsterdam (2002) 543–661. | DOI | MR | Zbl
, , ,[16] Calculating catchment area with divergent flow based on a regular grid. Comput. Geosci. 17 (1991) 413–422. | DOI
,[17] and regularity of the solution of a steady transport equation. C. R. Acad. Sci. Paris, Ser. I 348 (2010) 885–890. | DOI | MR | Zbl
and ,[18] Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation. Hydrol. Process. 8 (1994) 327–334. | DOI
,[19] An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46 (1986) 1–26. | DOI | MR | Zbl
, ,[20] On a finite element method for solving the neutron transport equation. Publ. Math. Inf. Rennes S 4 (1974) 1–40. | MR | Zbl
and ,[21] An adaptive approach to selecting a flow-partition exponent for a multiple-flow-direction algorithm. Int. J. Geog. Inf. Sci. 21 (2007) 443–458. | DOI
, , , , and ,[22] The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrol. Process. 5 (1991) 59–79. | DOI
, , snd ,[23] IDA: an implicit, parallelizable method for calculating drainage area. Water Resour. Res. 50 (2013) 4110–4130. | DOI
, and ,[24] A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resour. Res. 43 (2007) W04501. | DOI
and ,[25] A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resour. Res. 33 (1997) 309–319. | DOI
,[26] Comparison of single and multiple flow direction algorithms for computing topographic parameters in topmodel, Water Resour. Res. 31 (1995) 1315–1324. | DOI
and ,[27] Estimating surface flow paths on a digital elevation model using a triangular facet network, Water Resour. Res. 47 (2011) W07522. | DOI
, and ,Cité par Sources :