Some multiple flow direction algorithms for overland flow on general meshes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 1917-1949.

After recalling the most classical multiple flow direction algorithms (MFD), we establish their equivalence with a well chosen discretization of Manning–Strickler models for water flow. From this analogy, we derive a new MFD algorithm that remains valid on general, possibly non conforming meshes. We also derive a convergence theory for MFD algorithms based on the Manning–Strickler models. Numerical experiments illustrate the good behavior of the method even on distorted meshes.

DOI : 10.1051/m2an/2020025
Classification : 65N08, 65N12, 65N15
Mots-clés : Multiple flow direction algorithm, overland flow, virtual element method, hybrid finite volume, general meshes
@article{M2AN_2020__54_6_1917_0,
     author = {Coatl\'even, Julien},
     title = {Some multiple flow direction algorithms for overland flow on general meshes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1917--1949},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {6},
     year = {2020},
     doi = {10.1051/m2an/2020025},
     mrnumber = {4150230},
     zbl = {1467.65099},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020025/}
}
TY  - JOUR
AU  - Coatléven, Julien
TI  - Some multiple flow direction algorithms for overland flow on general meshes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1917
EP  - 1949
VL  - 54
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020025/
DO  - 10.1051/m2an/2020025
LA  - en
ID  - M2AN_2020__54_6_1917_0
ER  - 
%0 Journal Article
%A Coatléven, Julien
%T Some multiple flow direction algorithms for overland flow on general meshes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1917-1949
%V 54
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020025/
%R 10.1051/m2an/2020025
%G en
%F M2AN_2020__54_6_1917_0
Coatléven, Julien. Some multiple flow direction algorithms for overland flow on general meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 1917-1949. doi : 10.1051/m2an/2020025. http://www.numdam.org/articles/10.1051/m2an/2020025/

[1] C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport. Ann. Sci. Ec. Norm. Sup. Ser. 4 3 (1970) 185–233. | Numdam | MR | Zbl

[2] H. Beirão Da Veiga, Existence results in Sobolev spaces for a stationary transport equation. Ricerche Mat. Suppl. XXXVI (1987) 173–184. | MR | Zbl

[3] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed.. Springer (2008). | MR | Zbl

[4] J. Coatléven, Semi hybrid method for heterogeneous and anisotropic diffusion problems on general meshes. ESAIM: M2AN 49 (2015) 1063–1084. | DOI | Numdam | MR | Zbl

[5] J. Coatléven, A virtual volume method for heterogeneous and anisotropic diffusion-reaction problems on general meshes. ESAIM: M2AN 51 (2017) 797–824. | DOI | Numdam | MR | Zbl

[6] B. Cockburn, B. Dong and J. Guzmán, Optimal convergence of the original DG method for the transport-reaction equation on special meshes. SIAM J. Numer. Anal. 46 (2008) 1250–1265. | DOI | MR | Zbl

[7] D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Springer (2012). | DOI | MR | Zbl

[8] R.J. Diperna and P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–547. | DOI | MR | Zbl

[9] R.H. Erskine, T.R. Green, J.A. Ramirez and L.H. Macdonald, Comparison of grid-based algorithms for computing upslope contributing area. Water Resour. Res. 42 (2006) W09416. | DOI

[10] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, edited by P.G. Ciarlet and J.-L. Lions. In: Handbook of Numerical Analysis: Techniques of Scientific Computing, Part III. North-Holland, Amsterdam (2000) 713–1020. | MR | Zbl

[11] R. Eymard, T. Gallouët and R. Herbin, A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis. C. R. Math. Acad. Sci. Paris 344 (2007) 403–406. | DOI | MR | Zbl

[12] R. Eymard, T. Gallouët and R. Herbin, Discretisation of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilisation and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. | DOI | MR | Zbl

[13] R. Eymard, C. Guichard and R. Herbin, Benchmark 3D: the vag scheme. In: Vol. 2 of Springer Proceedings in Mathematics, FVCA6, Prague (2011) 213–222.

[14] R. Eymard, C. Guichard and R. Herbin, Small-stencil 3D schemes for diffusive flows in porous media. ESAIM: M2AN 46 (2011) 265–290. | DOI | Numdam | MR | Zbl

[15] E. Fernández-Cara, F. Guillén, R.R. Ortega, Mathematical modeling and analysis of visco-elastic fluids of the oldroyd kind, edited by P.G. Ciarlet and J.L. Lions. In: Vol. VIII of Handbook of Numerical Analysis: Numerical Methods for Fluids, Part 2. North-Holland, Amsterdam (2002) 543–661. | DOI | MR | Zbl

[16] T.G. Freeman, Calculating catchment area with divergent flow based on a regular grid. Comput. Geosci. 17 (1991) 413–422. | DOI

[17] V. Girault and L. Tartar, L p and W 1 , p regularity of the solution of a steady transport equation. C. R. Acad. Sci. Paris, Ser. I 348 (2010) 885–890. | DOI | MR | Zbl

[18] P. Holmgren, Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation. Hydrol. Process. 8 (1994) 327–334. | DOI

[19] C. Johnson, J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46 (1986) 1–26. | DOI | MR | Zbl

[20] P. Lesaint and P.A. Raviart, On a finite element method for solving the neutron transport equation. Publ. Math. Inf. Rennes S 4 (1974) 1–40. | MR | Zbl

[21] C. Qin, A.-X. Zhu, T. Pei, B. Li, C. Zhou and L. Yang, An adaptive approach to selecting a flow-partition exponent for a multiple-flow-direction algorithm. Int. J. Geog. Inf. Sci. 21 (2007) 443–458. | DOI

[22] P. Quinn, K. Beven, P. Chevallier snd O. Planchon, The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrol. Process. 5 (1991) 59–79. | DOI

[23] A. Richardson, C.N. Hill and J.T. Perron, IDA: an implicit, parallelizable method for calculating drainage area. Water Resour. Res. 50 (2013) 4110–4130. | DOI

[24] J. Seibert and B.L. Mcglynn, A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resour. Res. 43 (2007) W04501. | DOI

[25] D.G. Tarboton, A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resour. Res. 33 (1997) 309–319. | DOI

[26] D.M. Wolock and G.J. Mccabe Jr, Comparison of single and multiple flow direction algorithms for computing topographic parameters in topmodel, Water Resour. Res. 31 (1995) 1315–1324. | DOI

[27] Q. Zhou, P. Pilesjö and Y. Chen, Estimating surface flow paths on a digital elevation model using a triangular facet network, Water Resour. Res. 47 (2011) W07522. | DOI

Cité par Sources :