Semi hybrid method for heterogeneous and anisotropic diffusion problems on general meshes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 4, pp. 1063-1084.

Symmetric, unconditionnaly coercive schemes for the discretization of heterogeneous and anisotropic diffusion problems on general, possibly nonconforming meshes are developed and studied. These schemes are a further generalization of the Hybrid Mixed Method, which allows to use a general class of consistent gradients to construct them. While the schemes are in principle hybrid, many discrete gradients or the use of correct interpolation allow to eliminate the additional face unknowns. Convergence of the approximate solutions to minimal regularity solutions is proved for general tensors and meshes. Error estimates are derived under classical regularity assumptions. Numerical results illustrate the performance of the schemes.

Reçu le :
DOI : 10.1051/m2an/2015005
Classification : 65N08, 65N12, 65N15
Mots-clés : Heterogeneous diffusion problems, cell-centered methods, hybrid finite volumes, general meshes
Coatléven, Julien 1

1 IFP Énergies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
@article{M2AN_2015__49_4_1063_0,
     author = {Coatl\'even, Julien},
     title = {Semi hybrid method for heterogeneous and anisotropic diffusion problems on general meshes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1063--1084},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {4},
     year = {2015},
     doi = {10.1051/m2an/2015005},
     mrnumber = {3371904},
     zbl = {1327.65206},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2015005/}
}
TY  - JOUR
AU  - Coatléven, Julien
TI  - Semi hybrid method for heterogeneous and anisotropic diffusion problems on general meshes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1063
EP  - 1084
VL  - 49
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2015005/
DO  - 10.1051/m2an/2015005
LA  - en
ID  - M2AN_2015__49_4_1063_0
ER  - 
%0 Journal Article
%A Coatléven, Julien
%T Semi hybrid method for heterogeneous and anisotropic diffusion problems on general meshes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1063-1084
%V 49
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2015005/
%R 10.1051/m2an/2015005
%G en
%F M2AN_2015__49_4_1063_0
Coatléven, Julien. Semi hybrid method for heterogeneous and anisotropic diffusion problems on general meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 4, pp. 1063-1084. doi : 10.1051/m2an/2015005. http://www.numdam.org/articles/10.1051/m2an/2015005/

I. Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys. 127 (1996) 2–14. | DOI | Zbl

I. Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media part i: Derivation of the methods. SIAM J. Sci. Comput. 19 (1998a) 1700–1716. | DOI | MR | Zbl

I. Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media. part ii: Discussion and numerical results. SIAM J. Sci. Comput. 19 (1998b) 1717–1736. | DOI | MR | Zbl

L. Agélas and R. Masson, Convergence of finite volume mpfa o type schemes for heterogeenous anisotropic diffusion problems on general meshes. C.R. Acad. Paris Ser. I 346 (2008). | MR | Zbl

L. Agélas, D.A. Di Pietro and J. Droniou, The g method for heterogeneous anisotropic diffusion on general meshes. ESAIM: M2AN 11 (2010) 597–625. | DOI | Numdam | MR | Zbl

L. Agélas, D.A. Di Pietro, R. Eymard and R. Masson, An abstract analysis framework for nonconforming approximations of anistropic heterogeneous diffusion problems. IJFV International Journal On Finite Volumes 7 (2010). | MR

L. Agélas, D.A. Di Pietro and R. Masson, A symmetric and coercive finite volume scheme for multiphase porous media flow problems with applications in the oil industry. In Finite volume for Complex Applications V. Edited by R. Eymard ans J.-M. Hérard. Wiley (2008) 35–51. | MR

L. Beirao Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | DOI | MR | Zbl

L. Beirao da Veiga, K. Lipnikov and G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems. Springer (2014). | MR | Zbl

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR | Zbl

F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005a) 1872–1896. | DOI | MR | Zbl

F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15 (2005b) 1533–1551. | DOI | MR | Zbl

J. Droniou, Finite volume schemes for diffusion equations: introduction to and review of modern methods. Special edition “P.D.E. Discretizations on Polygonal Meshes”. M3AS 24 (2014) 1575–1619. | MR | Zbl

J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105 (2006) 35–71. | DOI | MR | Zbl

J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite differences, hybrid finite volume and mixed finite volume methods. IMA J. Numer. Anal. 31 (2011) 1357–1401. | Zbl

J. Droniou, R. Eymard, T. Gallouët and R. Herbin, Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. M3AS 23 (2013) 2395–2432. | MR | Zbl

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, In Techniques of scientific computiing, Part III. Handb. Numer. Anal. Edited by P.G. Ciarlet and J.-L. Lions. North-Holland, Amsterdam (2000) 713–1020. | MR | Zbl

R. Eymard, T. Gallouët and R. Herbin, A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis. C.R. Math. Acad. Sci. Paris 344 (2007a) 403–406. | DOI | MR | Zbl

R. Eymard, T. Gallouët and R. Herbin, Discretisation of heterogeneous and anisotropic diffusion problems on general nonconforming meshes sushi: a scheme using stabilisation and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043x. | DOI | MR | Zbl

R. Eymard and R. Herbin, A new colocated finite volume scheme for the incompressible navier-stokes equations on general non matching grids. C.R. Math. Acad. Sci. Paris 344 (2007b) 659–662. | DOI | MR | Zbl

R. Eymard, R. Herbin and C. Guichard, Small stencil 3d schemes for diffusive flows in porous media. ESAIM: M2AN 46 (2012) 265–290. | DOI | Numdam | MR | Zbl

D.A. Di Pietro, Cell centered galerkin methods. C.R. Acad. Sci. Paris Ser. I 348 (2010) 31–34. | DOI | MR | Zbl

D.A. Di Pietro, Cell centered galerkin methods for diffusive problems. ESAIM: M2AN 46 (2012) 111–144. | DOI | Numdam | MR | Zbl

M. Vohralík, Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes. ESAIM: M2AN 40 (2006) 367–391. | DOI | Numdam | MR | Zbl

M. Vohralík and B. Wohlmuth, From face to element unknowns by local static condensation with application to nonconforming finite elements. Comput. Methods Appl. Mech. Eng. 253 (2013a) 517–529. | DOI | MR | Zbl

M. Vohralík and B. Wohlmuth, Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods. Math. Models Methods Appl. Sci. 23 (2013b) 803–838. | DOI | MR | Zbl

Cité par Sources :