In this paper, starting from a non-convex and nonlocal 3D variational mathematical model for the electric polarization in a ferroelectric material, and using an asymptotic process based on dimensional reduction, we analyze junction phenomena for two orthogonal joined ferroelectric wires. Depending on the initial boundary conditions, we get several different limit problems, sometimes uncoupled. We point out that all the limit problems remain non-convex, but the nonlocality disappears.
Mots-clés : Electric polarization, nonlocal problems, optimal control, wire, junctions
@article{M2AN_2020__54_5_1429_0, author = {Carbone, Luciano and Gaudiello, Antonio and Hern\'andez-Llanos, Pedro}, title = {T-junction of ferroelectric wires}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1429--1463}, publisher = {EDP-Sciences}, volume = {54}, number = {5}, year = {2020}, doi = {10.1051/m2an/2020001}, mrnumber = {4116685}, zbl = {1450.35246}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2020001/} }
TY - JOUR AU - Carbone, Luciano AU - Gaudiello, Antonio AU - Hernández-Llanos, Pedro TI - T-junction of ferroelectric wires JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 1429 EP - 1463 VL - 54 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2020001/ DO - 10.1051/m2an/2020001 LA - en ID - M2AN_2020__54_5_1429_0 ER -
%0 Journal Article %A Carbone, Luciano %A Gaudiello, Antonio %A Hernández-Llanos, Pedro %T T-junction of ferroelectric wires %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 1429-1463 %V 54 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2020001/ %R 10.1051/m2an/2020001 %G en %F M2AN_2020__54_5_1429_0
Carbone, Luciano; Gaudiello, Antonio; Hernández-Llanos, Pedro. T-junction of ferroelectric wires. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1429-1463. doi : 10.1051/m2an/2020001. http://www.numdam.org/articles/10.1051/m2an/2020001/
[1] Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction. Comm. Partial Differ. Equ. 40 (2015) 652–693. | DOI | MR | Zbl
and ,[2] Asymptotic model for twisted bent ferromagnetic wires with electric current. Z. Angew. Math. Phys. 70 (2019) 6. | DOI | MR | Zbl
, and ,[3] A circuit equation as a limit of eddy current. Arch. Ration. Mech. Anal. 226 (2017) 405–440. | DOI | MR | Zbl
and ,[4] The Handbook of photonics, 2nd edition, edited , , , . In: Chapter 6. Ferroelectric Materials. CRC Press (2006).
and ,[5] -convergence for beginners. In: Vol. 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2002). | MR | Zbl
,[6] Asymptotic analysis of a Bingham fluid in a thin T-like shaped structure. J. Math. Pures Appl. 123 (2019) 148–166. | DOI | MR | Zbl
, and ,[7] Fin junction of ferroelectric thin films. Adv. Calc. Var. 11 (2018) 341–371. | DOI | MR | Zbl
, and ,[8] Unbounded functionals in the calculus of variations. Representation, relaxation, and homogenization. In: Vol. 125 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC, Boca Raton, FL (2002). | MR | Zbl
and ,[9] Stabilization of walls for nano-wires of finite length. ESAIM: COCV 18 (2012) 1–21. | Numdam | MR | Zbl
and ,[10] Quasi-stationary ferromagnetic problem for thin multi-structures. Rev. Mat. Complut. 30 (2017) 657–685. | DOI | MR | Zbl
, and ,[11] Junction of quasi-stationary ferromagnetic wires. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 31 (2020) 25–56. | MR | Zbl
, and ,[12] A Landau primer for ferroelectrics, edited by , and . In: The Physics of Ferroelectrics: A Modern Perspective. In: Vol. 105 of Topics Appl Phys (2007), 69–116. | DOI
and ,[13] Linear and nonlinear functional analysis with applications, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2013. | DOI | MR | Zbl
,[14] A justification of the two-dimensional linear plate model. J. Mécanique 18 (1979) 315–344. | MR | Zbl
and ,[15] Singularities of Maxwell interface problems, ESAIM: M2AN 33 (1999) 627–649. | DOI | Numdam | MR | Zbl
, and ,[16] History of ferroelectrics. Reprinted from the Ceramics and Civilization. In: Vol. III of High-Technology Ceramics-Past, Present, and Future. The American Ceramic Society Inc (1987).
and ,[17] An introduction to -convergence. In: Vol. 8 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc, Boston, MA (1993). | MR | Zbl
,[18] Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 842–850. | MR | Zbl
and ,[19] Asymptotic analysis of the high frequencies for the Laplace operator in a thin T-like shaped structure. J. Math. Pures Appl. 134 (2020) 299–327. | DOI | MR | Zbl
, and ,[20] Junction of one-dimensional minimization problems involving valued maps. Adv. Differ. Equ. 13 (2008) 935–958. | MR | Zbl
and ,[21] Asymptotic analysis, in a thin multidomain, of minimizing maps with values in . Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009) 59–80. | DOI | Numdam | MR | Zbl
and ,[22] Junction of ferromagnetic thin films. Calc. Var. Partial Differ. Equ. 39 (2010) 593–619. | DOI | MR | Zbl
and ,[23] Ferromagnetic thin multi-structures. J. Differ. Equ. 257 (2014) 1591–1622. | DOI | MR | Zbl
and ,[24] The polarization in a ferroelectric thin film: local and nonlocal limit problems. ESAIM: M2AN 19 (2013) 657–667. | Numdam | MR | Zbl
and ,[25] A reduced model for the polarization in a ferroelectric thin wire. NoDEA Nonlinear Differ. Equ. Appl. 22 (2015) 1883–1896. | DOI | MR | Zbl
and ,[26] Domain wall motion in magnetic nanowires: an asymptotic approach. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 (2013) 20130308. | MR | Zbl
, and , , ,[27] Problèmes variationnels dans le multi-domaines: modélisation des jonctions et applications. In: Vol. 19 of Research in Applied Mathematics. Masson, Paris (1991). | MR | Zbl
,[28] An Introduction to the Physics of Ferroelectrics. Gordon and Breach, London, New York (1976).
, and ,[29] Structure of Weis domain in ferroelectric crystals. Int. J. Eng. Sci. 30 (1992) 1715–1729. | DOI | MR | Zbl
and ,[30] Behaviour of the Landau-Lifschitz equation in a ferromagnetic wire. Math. Methods Appl. Sci. 32 (2009) 167–205. | DOI | MR | Zbl
,[31] Reduced models for ferromagnetic nanowires. IMA J. Appl. Math. 77 (2012) 220–235. | DOI | MR | Zbl
and ,[32] Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning. J. Mech. Phys. Solids 55 (2007) 280–305. | DOI | MR | Zbl
and ,[33] A computational model of ferroelectric domains. Part I. Model formulation and domain switching. Acta Mater. 53 (2005) 185–198. | DOI
and ,Cité par Sources :