Singularities of Maxwell interface problems
ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 3, pp. 627-649.
@article{M2AN_1999__33_3_627_0,
     author = {Costabel, Martin and Dauge, Monique and Nicaise, Serge},
     title = {Singularities of {Maxwell} interface problems},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {627--649},
     publisher = {EDP-Sciences},
     volume = {33},
     number = {3},
     year = {1999},
     mrnumber = {1713241},
     zbl = {0937.78003},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1999__33_3_627_0/}
}
TY  - JOUR
AU  - Costabel, Martin
AU  - Dauge, Monique
AU  - Nicaise, Serge
TI  - Singularities of Maxwell interface problems
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1999
SP  - 627
EP  - 649
VL  - 33
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/M2AN_1999__33_3_627_0/
LA  - en
ID  - M2AN_1999__33_3_627_0
ER  - 
%0 Journal Article
%A Costabel, Martin
%A Dauge, Monique
%A Nicaise, Serge
%T Singularities of Maxwell interface problems
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1999
%P 627-649
%V 33
%N 3
%I EDP-Sciences
%U http://www.numdam.org/item/M2AN_1999__33_3_627_0/
%G en
%F M2AN_1999__33_3_627_0
Costabel, Martin; Dauge, Monique; Nicaise, Serge. Singularities of Maxwell interface problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 3, pp. 627-649. http://www.numdam.org/item/M2AN_1999__33_3_627_0/

[1] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math.Methods Appl. Sci. 21 (1998) 823-864. | MR | Zbl

[2] F. Assous, P. Ciarlet and E. Sonnendrücker, Résolution des équations de Maxwell dans un domaine avec un coin rentrant. C.R. Acad. Sci. Paris, Ser. I 323 (1996) 203-208. | MR | Zbl

[3] M. Birman and M. Solomyak, L2-theory of the Maxwell operator in arbitrary domains. Russ. Math, Surv. 42 (1987) 75-96. | MR | Zbl

[4] M. Birman and M. Solomyak, On the main singularities of the electric component of the electro-magnetic field in regions with screens. St. Petersbg. Math. J. 5 (1993) 125-139. | MR | Zbl

[5] A. Bonnet-Bendhia, C. Hazard and S. Lohrengel, A singular field method for the solution of Maxwell's equations in polyhedral domains. SIAM J. Appl. Math, (to appear). | MR | Zbl

[6] M. Costabel, A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains. Math. Methods Appl. Sci. 12 (1990) 365-368. | MR | Zbl

[7] M. Costabel, A coercive bilinear form for Maxwell's equations. J. Math. Anal. Appl. 157 (1991) 527-541. | MR | Zbl

[8] M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal (to appear). | MR | Zbl

[9] M. Dauge, Elliptic Boundary Value Problems in Corner Domains - Smoothness and Asymptotics of Solutions. Lect. Notes Math. Vol. 1341. Springer-Verlag, Berlin (1988). | MR | Zbl

[10] M. Dobrowolski, Numerical approximation of elliptic interface and corner problems. Habilitationsschrift, Bonn (1981).

[11] P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957-991. | MR | Zbl

[12] N. Filonov, Système de Maxwell dans des domaines singuliers. Ph.D. thesis, University of Bordeaux 1, France (1996).

[13] V.A. Kondrat'Ev, Boundary-value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc, 16 (1967) 227-313. | MR | Zbl

[14] T. Kühn, Die Regularität der Lösungen von Interface-Problemen in Gebieten mit singulären Punkten. Ph.D. thesis, University of Rostock (1992).

[15] D. Leguillon and E. Sanchez-Palencia, Computation of singular solutions in elliptic problems and elasticity. RMA 5. Masson, Paris (1987). | MR | Zbl

[16] K. Lemrabet, Régularité de la solution d'un problème de transmission. J. Math. Pures Appl 56 (1977) 1-38. | MR | Zbl

[17] M. Moussaoui, Espaces H (div,rot, Ω) dans un polygone plan. C.R. Acad. Sci. Paris, Ser. 7 322 (1996) 225-229. | MR | Zbl

[18] S. Nicaise, Polygonal interface problems. Methoden und Verfahren der Mathematischen Physik, 39. Verlag Peter D. Lang, Frankfurt-am-Main (1993). | MR | Zbl

[19] S. Nicaise and A.M. Sändig, General interface problems I/II. Math. Methods Appl. Sci. 17 (1994) 395-450. | MR | Zbl

[20] J. Saranen, On an inequality of Friedrichs. Math. Scand. 51 (1982) 310-322. | MR | Zbl