In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.
Mots clés : Landau-Lifschitz equation, control, stabilization
@article{COCV_2012__18_1_1_0, author = {Carbou, Gilles and Labb\'e, St\'ephane}, title = {Stabilization of walls for nano-wires of finite length}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1--21}, publisher = {EDP-Sciences}, volume = {18}, number = {1}, year = {2012}, doi = {10.1051/cocv/2010048}, mrnumber = {2887925}, zbl = {1235.35029}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2010048/} }
TY - JOUR AU - Carbou, Gilles AU - Labbé, Stéphane TI - Stabilization of walls for nano-wires of finite length JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 1 EP - 21 VL - 18 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2010048/ DO - 10.1051/cocv/2010048 LA - en ID - COCV_2012__18_1_1_0 ER -
%0 Journal Article %A Carbou, Gilles %A Labbé, Stéphane %T Stabilization of walls for nano-wires of finite length %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 1-21 %V 18 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2010048/ %R 10.1051/cocv/2010048 %G en %F COCV_2012__18_1_1_0
Carbou, Gilles; Labbé, Stéphane. Stabilization of walls for nano-wires of finite length. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 1-21. doi : 10.1051/cocv/2010048. http://www.numdam.org/articles/10.1051/cocv/2010048/
[1] Néel and cross-tie wall energies for planar micromagnetic configurations. ESAIM : COCV 8 (2002) 31-68. | Numdam | MR | Zbl
, and ,[2] Micromagnetics. Interscience Publisher, John Willey and Sons, New York (1963).
,[3] Regularity for critical points of a nonlocal energy. Calc. Var. 5 (1997) 409-433. | MR | Zbl
,[4] Thin layers in micromagnetism. Math. Models Methods Appl. Sci. 11 (2001) 1529-1546. | MR | Zbl
,[5] Time average in micromagnetism. J. Differ. Equ. 147 (1998) 383-409. | MR | Zbl
and ,[6] Regular solutions for Landau-Lifschitz equation in a bounded domain. Differential Integral Equations 14 (2001) 213-229. | MR | Zbl
and ,[7] Regular solutions for Landau-Lifschitz equation in R3. Commun. Appl. Anal. 5 (2001) 17-30. | MR | Zbl
and ,[8] Stability for static walls in ferromagnetic nanowires. Discrete Continous Dyn. Syst. Ser. B 6 (2006) 273-290. | MR | Zbl
and ,[9] Control of travelling walls in a ferromagnetic nanowire. Discrete Contin. Dyn. Syst. Ser. S 1 (2008) 51-59. | MR
, and ,[10] Magnetic microstructures - a paradigm of multiscale problems, in ICIAM 99 (Edinburgh), Oxford Univ. Press, Oxford (2000) 175-190. | Zbl
, , and ,[11] Modélisation et simulation du comportement des matériaux ferromagnétiques. Matapli 66 (2001) 70-86.
and ,[12] Multidimensional stability of planar travelling waves. Trans. Amer. Math. Soc. 349 (1997) 257-269. | MR | Zbl
,[13] Travelling waves with a singularity in magnetic nanowires. Commun. Partial Diff. Equ. 34 (2009) 722-764. | MR | Zbl
,[14] Simulation numérique du comportement hyperfréquence des matériaux ferromagnétiques. Thèse de l'Université Paris 13, Paris (1998).
,[15] Microwave polarisability of ferrite particles with non-uniform magnetization. J. Magn. Magn. Mater. 206 (1999) 93-105.
and ,[16] Compactness, kinetic formulation, and entropies for a problem related to micromagnetics. Commun. Partial Diff. Equ. 28 (2003) 249-269. | MR | Zbl
and ,[17] Méthodes asymptotiques en ferromagnétisme. Thèse de l'Université Bordeaux 1, Bordeaux (2004).
,[18] Domain wall dynamics in nanowires. J. Magn. Magn. Mater. 242-245 (2002) 1061-1063.
, and ,[19] On Landau Lifschitz equation for ferromagnetism. Japan Journal of Applied Mathematics 1 (1985) 69-84. | Zbl
,[20] Ferromagnetism, Encyclopedia of Physics XVIII/2. Springer-Verlag, Berlin (1966).
,Cité par Sources :