Stabilization of walls for nano-wires of finite length
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 1-21.

In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.

DOI : 10.1051/cocv/2010048
Classification : 35B35, 35K55
Mots clés : Landau-Lifschitz equation, control, stabilization
@article{COCV_2012__18_1_1_0,
     author = {Carbou, Gilles and Labb\'e, St\'ephane},
     title = {Stabilization of walls for nano-wires of finite length},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1--21},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {1},
     year = {2012},
     doi = {10.1051/cocv/2010048},
     mrnumber = {2887925},
     zbl = {1235.35029},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2010048/}
}
TY  - JOUR
AU  - Carbou, Gilles
AU  - Labbé, Stéphane
TI  - Stabilization of walls for nano-wires of finite length
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 1
EP  - 21
VL  - 18
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2010048/
DO  - 10.1051/cocv/2010048
LA  - en
ID  - COCV_2012__18_1_1_0
ER  - 
%0 Journal Article
%A Carbou, Gilles
%A Labbé, Stéphane
%T Stabilization of walls for nano-wires of finite length
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 1-21
%V 18
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2010048/
%R 10.1051/cocv/2010048
%G en
%F COCV_2012__18_1_1_0
Carbou, Gilles; Labbé, Stéphane. Stabilization of walls for nano-wires of finite length. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 1-21. doi : 10.1051/cocv/2010048. http://www.numdam.org/articles/10.1051/cocv/2010048/

[1] F. Alouges, T. Rivière and S. Serfaty, Néel and cross-tie wall energies for planar micromagnetic configurations. ESAIM : COCV 8 (2002) 31-68. | Numdam | MR | Zbl

[2] W.F. Brown, Micromagnetics. Interscience Publisher, John Willey and Sons, New York (1963).

[3] G. Carbou, Regularity for critical points of a nonlocal energy. Calc. Var. 5 (1997) 409-433. | MR | Zbl

[4] G. Carbou, Thin layers in micromagnetism. Math. Models Methods Appl. Sci. 11 (2001) 1529-1546. | MR | Zbl

[5] G. Carbou and P. Fabrie, Time average in micromagnetism. J. Differ. Equ. 147 (1998) 383-409. | MR | Zbl

[6] G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain. Differential Integral Equations 14 (2001) 213-229. | MR | Zbl

[7] G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in R3. Commun. Appl. Anal. 5 (2001) 17-30. | MR | Zbl

[8] G. Carbou and S. Labbé, Stability for static walls in ferromagnetic nanowires. Discrete Continous Dyn. Syst. Ser. B 6 (2006) 273-290. | MR | Zbl

[9] G. Carbou, S. Labbé and E. Trélat, Control of travelling walls in a ferromagnetic nanowire. Discrete Contin. Dyn. Syst. Ser. S 1 (2008) 51-59. | MR

[10] A. Desimone, R.V. Kohn, S. Müller and F. Otto, Magnetic microstructures - a paradigm of multiscale problems, in ICIAM 99 (Edinburgh), Oxford Univ. Press, Oxford (2000) 175-190. | Zbl

[11] L. Halpern and S. Labbé, Modélisation et simulation du comportement des matériaux ferromagnétiques. Matapli 66 (2001) 70-86.

[12] T. Kapitula, Multidimensional stability of planar travelling waves. Trans. Amer. Math. Soc. 349 (1997) 257-269. | MR | Zbl

[13] K. Kühn, Travelling waves with a singularity in magnetic nanowires. Commun. Partial Diff. Equ. 34 (2009) 722-764. | MR | Zbl

[14] S. Labbé, Simulation numérique du comportement hyperfréquence des matériaux ferromagnétiques. Thèse de l'Université Paris 13, Paris (1998).

[15] S. Labbé and P.-Y. Bertin, Microwave polarisability of ferrite particles with non-uniform magnetization. J. Magn. Magn. Mater. 206 (1999) 93-105.

[16] T. Rivière and S. Serfaty, Compactness, kinetic formulation, and entropies for a problem related to micromagnetics. Commun. Partial Diff. Equ. 28 (2003) 249-269. | MR | Zbl

[17] D. Sanchez, Méthodes asymptotiques en ferromagnétisme. Thèse de l'Université Bordeaux 1, Bordeaux (2004).

[18] A. Thiaville, J.M. Garcia and J. Miltat, Domain wall dynamics in nanowires. J. Magn. Magn. Mater. 242-245 (2002) 1061-1063.

[19] A. Visintin, On Landau Lifschitz equation for ferromagnetism. Japan Journal of Applied Mathematics 1 (1985) 69-84. | Zbl

[20] H. Wynled, Ferromagnetism, Encyclopedia of Physics XVIII/2. Springer-Verlag, Berlin (1966).

Cité par Sources :