T-junction of ferroelectric wires
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1429-1463.

In this paper, starting from a non-convex and nonlocal 3D variational mathematical model for the electric polarization in a ferroelectric material, and using an asymptotic process based on dimensional reduction, we analyze junction phenomena for two orthogonal joined ferroelectric wires. Depending on the initial boundary conditions, we get several different limit problems, sometimes uncoupled. We point out that all the limit problems remain non-convex, but the nonlocality disappears.

DOI : 10.1051/m2an/2020001
Classification : 35Q61, 78A25, 49J20
Mots-clés : Electric polarization, nonlocal problems, optimal control, wire, junctions
@article{M2AN_2020__54_5_1429_0,
     author = {Carbone, Luciano and Gaudiello, Antonio and Hern\'andez-Llanos, Pedro},
     title = {T-junction of ferroelectric wires},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1429--1463},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {5},
     year = {2020},
     doi = {10.1051/m2an/2020001},
     mrnumber = {4116685},
     zbl = {1450.35246},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020001/}
}
TY  - JOUR
AU  - Carbone, Luciano
AU  - Gaudiello, Antonio
AU  - Hernández-Llanos, Pedro
TI  - T-junction of ferroelectric wires
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1429
EP  - 1463
VL  - 54
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020001/
DO  - 10.1051/m2an/2020001
LA  - en
ID  - M2AN_2020__54_5_1429_0
ER  - 
%0 Journal Article
%A Carbone, Luciano
%A Gaudiello, Antonio
%A Hernández-Llanos, Pedro
%T T-junction of ferroelectric wires
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1429-1463
%V 54
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020001/
%R 10.1051/m2an/2020001
%G en
%F M2AN_2020__54_5_1429_0
Carbone, Luciano; Gaudiello, Antonio; Hernández-Llanos, Pedro. T-junction of ferroelectric wires. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1429-1463. doi : 10.1051/m2an/2020001. http://www.numdam.org/articles/10.1051/m2an/2020001/

[1] Y. Achdou and N. Tchou, Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction. Comm. Partial Differ. Equ. 40 (2015) 652–693. | DOI | MR | Zbl

[2] A.K. Al Sayed, G. Carbou and S. Labbé, Asymptotic model for twisted bent ferromagnetic wires with electric current. Z. Angew. Math. Phys. 70 (2019) 6. | DOI | MR | Zbl

[3] Y. Amirat and R. Touzani, A circuit equation as a limit of eddy current. Arch. Ration. Mech. Anal. 226 (2017) 405–440. | DOI | MR | Zbl

[4] J. Ballato and M.C. Gupta, The Handbook of photonics, 2nd edition, edited V. Gopalan, K.L. Schepler, V. Dierolf, I. Biaggio. In: Chapter 6. Ferroelectric Materials. CRC Press (2006).

[5] A. Braides, Γ -convergence for beginners. In: Vol. 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2002). | MR | Zbl

[6] R. Bunoiu, A. Gaudiello and A. Leopardi, Asymptotic analysis of a Bingham fluid in a thin T-like shaped structure. J. Math. Pures Appl. 123 (2019) 148–166. | DOI | MR | Zbl

[7] L. Carbone, K. Chacouche and A. Gaudiello, Fin junction of ferroelectric thin films. Adv. Calc. Var. 11 (2018) 341–371. | DOI | MR | Zbl

[8] L. Carbone and R. De Arcangelis, Unbounded functionals in the calculus of variations. Representation, relaxation, and homogenization. In: Vol. 125 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC, Boca Raton, FL (2002). | MR | Zbl

[9] G. Carbou and S. Labbé, Stabilization of walls for nano-wires of finite length. ESAIM: COCV 18 (2012) 1–21. | Numdam | MR | Zbl

[10] K. Chacouche, L. Faella and C. Perugia, Quasi-stationary ferromagnetic problem for thin multi-structures. Rev. Mat. Complut. 30 (2017) 657–685. | DOI | MR | Zbl

[11] K. Chacouche, L. Faella and C. Perugia, Junction of quasi-stationary ferromagnetic wires. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 31 (2020) 25–56. | MR | Zbl

[12] P. Chandra and P.B. Littlewood, A Landau primer for ferroelectrics, edited by K. Rabe, C.H. Ahn and J.-M. Triscone. In: The Physics of Ferroelectrics: A Modern Perspective. In: Vol. 105 of Topics Appl Phys (2007), 69–116. | DOI

[13] P.G. Ciarlet, Linear and nonlinear functional analysis with applications, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2013. | DOI | MR | Zbl

[14] P.G. Ciarlet and P. Destuynder, A justification of the two-dimensional linear plate model. J. Mécanique 18 (1979) 315–344. | MR | Zbl

[15] M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems, ESAIM: M2AN 33 (1999) 627–649. | DOI | Numdam | MR | Zbl

[16] L.E. Cross and R.E. Newnham, History of ferroelectrics. Reprinted from the Ceramics and Civilization. In: Vol. III of High-Technology Ceramics-Past, Present, and Future. The American Ceramic Society Inc (1987).

[17] G. Dal Maso, An introduction to Γ -convergence. In: Vol. 8 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc, Boston, MA (1993). | MR | Zbl

[18] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 842–850. | MR | Zbl

[19] A. Gaudiello, D. Gómez and M.E. Pérez, Asymptotic analysis of the high frequencies for the Laplace operator in a thin T-like shaped structure. J. Math. Pures Appl. 134 (2020) 299–327. | DOI | MR | Zbl

[20] A. Gaudiello and R. Hadiji, Junction of one-dimensional minimization problems involving S 2 valued maps. Adv. Differ. Equ. 13 (2008) 935–958. | MR | Zbl

[21] A. Gaudiello and R. Hadiji, Asymptotic analysis, in a thin multidomain, of minimizing maps with values in S 2 . Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009) 59–80. | DOI | Numdam | MR | Zbl

[22] A. Gaudiello and R. Hadiji, Junction of ferromagnetic thin films. Calc. Var. Partial Differ. Equ. 39 (2010) 593–619. | DOI | MR | Zbl

[23] A. Gaudiello and R. Hadiji, Ferromagnetic thin multi-structures. J. Differ. Equ. 257 (2014) 1591–1622. | DOI | MR | Zbl

[24] A. Gaudiello and K. Hamdache, The polarization in a ferroelectric thin film: local and nonlocal limit problems. ESAIM: M2AN 19 (2013) 657–667. | Numdam | MR | Zbl

[25] A. Gaudiello and K. Hamdache, A reduced model for the polarization in a ferroelectric thin wire. NoDEA Nonlinear Differ. Equ. Appl. 22 (2015) 1883–1896. | DOI | MR | Zbl

[26] A. Goussev, R.G. Lund and J.M. Robbins, V. Slastikov, C. Sonnenberg, Domain wall motion in magnetic nanowires: an asymptotic approach. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 (2013) 20130308. | MR | Zbl

[27] H. Le Dret, Problèmes variationnels dans le multi-domaines: modélisation des jonctions et applications. In: Vol. 19 of Research in Applied Mathematics. Masson, Paris (1991). | MR | Zbl

[28] T. Mitsui, I. Taksuzaki and E. Nakamura, An Introduction to the Physics of Ferroelectrics. Gordon and Breach, London, New York (1976).

[29] A. Romano and E.S. Şuhubi, Structure of Weis domain in ferroelectric crystals. Int. J. Eng. Sci. 30 (1992) 1715–1729. | DOI | MR | Zbl

[30] D. Sanchez, Behaviour of the Landau-Lifschitz equation in a ferromagnetic wire. Math. Methods Appl. Sci. 32 (2009) 167–205. | DOI | MR | Zbl

[31] V. Slastikov and C. Sonnenberg, Reduced models for ferromagnetic nanowires. IMA J. Appl. Math. 77 (2012) 220–235. | DOI | MR | Zbl

[32] Y. Su and C.M. Landis, Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning. J. Mech. Phys. Solids 55 (2007) 280–305. | DOI | MR | Zbl

[33] W. Zhang and K. Bhattacharya, A computational model of ferroelectric domains. Part I. Model formulation and domain switching. Acta Mater. 53 (2005) 185–198. | DOI

Cité par Sources :