In this paper we consider 2D nonlocal diffusion models with a finite nonlocal horizon parameter δ characterizing the range of nonlocal interactions, and consider the treatment of Neumann-like boundary conditions that have proven challenging for discretizations of nonlocal models. We propose a new generalization of classical local Neumann conditions by converting the local flux to a correction term in the nonlocal model, which provides an estimate for the nonlocal interactions of each point with points outside the domain. While existing 2D nonlocal flux boundary conditions have been shown to exhibit at most first order convergence to the local counter part as δ → 0, the proposed Neumann-type boundary formulation recovers the local case as O(δ2) in the L∞ (Ω) norm, which is optimal considering the O(δ2) convergence of the nonlocal equation to its local limit away from the boundary. We analyze the application of this new boundary treatment to the nonlocal diffusion problem, and present conditions under which the solution of the nonlocal boundary value problem converges to the solution of the corresponding local Neumann problem as the horizon is reduced. To demonstrate the applicability of this nonlocal flux boundary condition to more complicated scenarios, we extend the approach to less regular domains, numerically verifying that we preserve second-order convergence for non-convex domains with corners. Based on the new formulation for nonlocal boundary condition, we develop an asymptotically compatible meshfree discretization, obtaining a solution to the nonlocal diffusion equation with mixed boundary conditions that converges with O(δ2) convergence.
Mots-clés : Integro-differential equations, nonlocal diffusion, neumann-type boundary condition, meshless, asymptotic compatibility
@article{M2AN_2020__54_4_1373_0, author = {You, Huaiqian and Lu, XinYang and Task, Nathaniel and Yu, Yue}, title = {An asymptotically compatible approach for {Neumann-type} boundary condition on nonlocal problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1373--1413}, publisher = {EDP-Sciences}, volume = {54}, number = {4}, year = {2020}, doi = {10.1051/m2an/2019089}, mrnumber = {4113055}, zbl = {1474.45069}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2019089/} }
TY - JOUR AU - You, Huaiqian AU - Lu, XinYang AU - Task, Nathaniel AU - Yu, Yue TI - An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 1373 EP - 1413 VL - 54 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2019089/ DO - 10.1051/m2an/2019089 LA - en ID - M2AN_2020__54_4_1373_0 ER -
%0 Journal Article %A You, Huaiqian %A Lu, XinYang %A Task, Nathaniel %A Yu, Yue %T An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 1373-1413 %V 54 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2019089/ %R 10.1051/m2an/2019089 %G en %F M2AN_2020__54_4_1373_0
You, Huaiqian; Lu, XinYang; Task, Nathaniel; Yu, Yue. An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1373-1413. doi : 10.1051/m2an/2019089. http://www.numdam.org/articles/10.1051/m2an/2019089/
Approximation by generalized impedance boundary conditions of a transmission problem in acoustic scattering. ESAIM: M2AN 39 (2005) 1041–1059. | DOI | Numdam | MR | Zbl
and ,Results on nonlocal boundary value problems. Numer. Funct. Anal. Optim. 31 (2010) 1301–1317. | DOI | MR | Zbl
and ,Peridynamics and material interfaces. J. Elast. 120 (2015) 225–248. | DOI | MR
and ,Peridynamic analysis of damage and failure in composites. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. AIAA, Reston, VA (2006). | DOI
, and ,Robin based semi-implicit coupling in fluid-structure interaction: stability analysis and numerics. SIAM J. Sci. Comput. 31 (2009) 4041–4065. | DOI | MR | Zbl
, and ,Boundary conditions for fractional diffusion. J. Comput. Appl. Math. 336 (2018) 408–424. | DOI | MR
, , and ,Fluid-structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227 (2008) 7027–7051. | DOI | MR | Zbl
, and ,On Neumann and oblique derivatives boundary conditions for nonlocal elliptic equations. J. Diff. Equ. 256 (2014) 1368–1394. | DOI | MR | Zbl
, and ,Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128 (2002) 1119–1149. | DOI
and ,A meshfree unification: reproducing kernel peridynamics. Comput. Mech. 53 (2014) 1251–1264. | DOI | MR | Zbl
, , and ,Adaptive refinement and multiscale modeling in 2D peridynamics. Int. J. Multiscale Comput. Eng. 9 (2011) 635–659. | DOI
and ,Finite element discretizations of nonlocal minimal graphs: convergence. Preprint arXiv:1905.06395 (2019). | DOI | MR
, and ,Another Look at Sobolev Spaces. IOS Press (2001). | MR | Zbl
, and ,The Mathematical Theory of Finite Element Methods. Springer Science & Business Media, 15 (2007). | MR | Zbl
and ,Nonlocal Diffusion and Applications. Springer 20 (2016). | DOI | MR
and ,Classical, nonlocal, and fractional diffusion equations on bounded domains. Int. J. Multiscale Comput. Eng. 9 (2011) 661–674. | DOI
and ,Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel. ESAIM: M2AN 52 (2018) 163–180. | DOI | Numdam | MR
and ,Boundary fluxes for nonlocal diffusion. J. Differ. Equ. 234 (2007) 360–390. | DOI | MR | Zbl
, , and ,How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems. Arch. Ration. Mech. Anal. 187 (2008) 137–156. | DOI | MR | Zbl
, , and ,A real-space non-local phase-field model of ferroelectric domain patterns in complex geometries. Acta Mater. 55 (2007) 1907–1917. | DOI
and ,Fractional diffusion on bounded domains. Fract. Calc. Appl. Anal. 18 (2015) 342–360. | DOI | MR
, , , , and ,An approach to modeling extreme loading of structures using peridynamics. J. Mech. Mater. Struct. 2 (2007) 1921–1945. | DOI
and ,Nonlocal problems with Neumann boundary conditions. Rev. Mat. Iberoamericana 33 (2017) 377–416. | DOI | MR
, and ,Boundary behavior of nonlocal minimal surfaces. J. Funct. Anal. 272 (2017) 1791–1851. | DOI | MR
, and ,Peridynamics, fracture, and nonlocal continuum models. SIAM News 47 (2014).
and ,Mathematical analysis for the peridynamic nonlocal continuum theory. ESAIM: M2AN 45 (2011) 217–234. | DOI | Numdam | MR | Zbl
and ,Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54 (2012) 667–696. | DOI | MR | Zbl
, , and ,A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Models Methods Appl. Sci. 23 (2013) 493–540. | DOI | MR | Zbl
, , and ,Nonlocal convection-diffusion volume-constrained problems and jump processes. Disc. Cont. Dyn. Syst. B 19 (2014) 961–977. | MR
, and ,Integral approximations to classical diffusion and smoothed particle hydrodynamics. Comput. Methods Appl. Mech. Eng. 286 (2015) 216–229. | DOI | MR
, and ,Multiscale analysis of linear evolution equations with applications to nonlocal models for heterogeneous media. ESAIM: M2AN 50 (2016) 1425–1455. | DOI | Numdam | MR
, and ,A peridynamic model of fracture mechanics with bond-breaking. J. Elast. 132 (2018) 197–218. | DOI | MR
, and ,Analysis and numerical approximation of an integro-differential equation modeling non-local effects in linear elasticity. Math. Mech. Solids 12 (2007) 363–384. | DOI | MR | Zbl
and ,On the well-posedness of the linear peridynamic model and its convergence towards the navier equation of linear elasticity. Commun. Math. Sci. 5 (2007) 851–864. | DOI | MR | Zbl
and ,Survey of existence results in nonlinear peridynamics in comparison with local elastodynamics. Comput. Methods Appl. Math. 15 (2015) 483–496. | DOI | MR
and ,Convergence of a semi-discrete numerical method for a class of nonlocal nonlinear wave equations. ESAIM: M2AN 52 (2018) 803–826. | DOI | Numdam | MR
, and ,Dynamic crack initiation toughness: experiments and peridynamic modeling. Ph.D. thesis. Purdue University (2009). | DOI
.Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237 (2007) 1250–1258. | DOI
, and ,Local and nonlocal boundary conditions for -transmission and fractional elliptic pseudodifferential operators. Anal. PDE 7 (2014) 1649–1682. | DOI | MR | Zbl
,Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78 (2011) 1156–1168. | DOI
and ,Boundary conditions for two-sided fractional diffusion. J. Comput. Phys. 376 (2019) 1089–1107. | DOI | MR
, and ,Dynamic brittle fracture as a small horizon limit of peridynamics. J. Elast. 117 (2014) 21–50. | DOI | MR | Zbl
,What is the fractional laplacian?. Preprint (2018). | arXiv
, , , , , , , , , and ,Strong local-nonlocal coupling for integrated fracture modeling. Technical report, Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States) (2015). | DOI
, , , , , , , , and ,Peridynamic Theory and its Applications. Springer (2016). | Zbl
and ,Weak form of peridynamics for nonlocal essential and natural boundary conditions. Comput. Methods Appl. Mech. Eng. 337 (2018) 598–631. | DOI | MR
, , and ,Fractional Calculus in Bioengineering. Begell House Publishers Inc., Redding, CT (2006).
,Hamilton-jacobi equations and distance functions on riemannian manifolds. Appl. Math. Optim. 47 (2003) 1–25. | DOI | MR | Zbl
and ,Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific (2010). | DOI | MR | Zbl
,Analysis of a scalar peridynamic model with a sign changing kernel. Disc. Cont. Dyn. Sys. B 18 (2013) 1415–1437. | MR | Zbl
and ,Nonlocal constrained value problems for a linear peridynamic navier equation. J. Elast. 116 (2014) 27–51. | DOI | MR | Zbl
and ,Characterization of function spaces of vector fields and an application in nonlinear peridynamics. Nonlinear Anal. 140 (2016) 82–111. | DOI | MR | Zbl
and ,Fractional diffusion with Neumann boundary conditions: the logistic equation. Disc. Cont. Dyn. Sys. B 18 (2013) 2175–2202. | MR | Zbl
, and ,Peridynamics with Lammps: A User Guide v0.2 Beta. Sandia National Laboraties (2008).
, , , and ,Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press 198 (1998). | MR | Zbl
,An estimate in the spirit of poincaré’s inequality. J. Eur. Math. Soc. 6 (2004) 1–15. | DOI | MR | Zbl
,Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 232 (2013) 456–467. | DOI | MR | Zbl
, and ,A priori error estimates for reduced order models in finance. ESAIM: M2AN 47 (2013) 449–469. | DOI | Numdam | MR
and ,Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains. Comput. Methods Appl. Mech. Eng. 266 (2013) 185–204. | DOI | MR | Zbl
, and ,Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48 (2000) 175–209. | DOI | MR | Zbl
,Nonlocal diffusion and peridynamic models with Neumann type constraints and their numerical approximations. Appl. Math. Comput. 305 (2017) 282–298. | MR | Zbl
, and ,A two-dimensional peridynamic model for thin plates. Math. Mech. Solids 20 (2015) 998–1010. | DOI | MR | Zbl
and ,Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM J. Numer. Anal. 52 (2014) 1641–1665. | DOI | MR | Zbl
and ,An asymptotically compatible meshfree quadrature rule for nonlocal problems with applications to peridynamics. Comput. Methods Appl. Mech. Eng. 343 (2019) 151–165. | DOI | MR | Zbl
, , and ,Damage and failure analysis based on peridynamics—theory and applications. In: 48th AIAA Structures, Structural Dynamics, and Materials Conf (2007).
, , , and ,Scattered Data Approximation. Cambridge University Press 17 (2004). | DOI | MR | Zbl
,Peridynamic analysis of impact damage in composite laminates. J. Aerosp. Eng. 21 (2008) 187–194. | DOI
, , and ,A partitioned coupling framework for peridynamics and classical theory: analysis and simulations. Comput. Methods Appl. Mech. Eng. 340 (2018) 905–931. | DOI | MR | Zbl
, , , , and ,Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48 (2010) 1759–1780. | DOI | MR | Zbl
and ,A continuum theory with long-range forces for solids. Ph.D. thesis. Massachusetts Institute of Technology (2005).
,Cité par Sources :