We develop a functional analytical framework for a linear peridynamic model of a spring network system in any space dimension. Various properties of the peridynamic operators are examined for general micromodulus functions. These properties are utilized to establish the well-posedness of both the stationary peridynamic model and the Cauchy problem of the time dependent peridynamic model. The connections to the classical elastic models are also provided.
Mots clés : peridynamic model, nonlocal continuum theory, well-posedness, Navier equation
@article{M2AN_2011__45_2_217_0, author = {Du, Qiang and Zhou, Kun}, title = {Mathematical analysis for the peridynamic nonlocal continuum theory}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {217--234}, publisher = {EDP-Sciences}, volume = {45}, number = {2}, year = {2011}, doi = {10.1051/m2an/2010040}, mrnumber = {2804637}, zbl = {1269.45005}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2010040/} }
TY - JOUR AU - Du, Qiang AU - Zhou, Kun TI - Mathematical analysis for the peridynamic nonlocal continuum theory JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 217 EP - 234 VL - 45 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2010040/ DO - 10.1051/m2an/2010040 LA - en ID - M2AN_2011__45_2_217_0 ER -
%0 Journal Article %A Du, Qiang %A Zhou, Kun %T Mathematical analysis for the peridynamic nonlocal continuum theory %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 217-234 %V 45 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2010040/ %R 10.1051/m2an/2010040 %G en %F M2AN_2011__45_2_217_0
Du, Qiang; Zhou, Kun. Mathematical analysis for the peridynamic nonlocal continuum theory. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 2, pp. 217-234. doi : 10.1051/m2an/2010040. http://www.numdam.org/articles/10.1051/m2an/2010040/
[1] Multiscale Analysis of Heterogeneous Media in the Peridynamic Formulation. IMA preprint, 2241 (2009).
and ,[2] Peridynamics for multiscale materials modeling. J. Phys. Conf. Ser. 125 (2008) 012078.
, , , , and ,[3] Can the nonlocal characterization of Sobolev spaces by Bourgain et al. be useful for solving variational problems? SIAM J. Numer. Anal. 47 (2009) 844-860. | MR | Zbl
and ,[4] A bridging domain method for coupling continua with molecular dynamics. Int. J. Mult. Comp. Eng. 1 (2003) 115-126. | MR | Zbl
and ,[5] Atomistic/continuum coupling methods in multi-scale materials modeling. Mod. Simul. Mater. Sci. Engineering 11 (2003) R33-R68.
and ,[6] Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J. Mech. Phys. Solids 54 (2006) 1811-1842. | MR | Zbl
and ,[7] Linear Operators, Part I: General Theory. Interscience, New York (1958). | MR | Zbl
and ,[8] Analysis and numerical approximation of an integrodifferential equation modelling non-local effects in linear elasticity. Math. Mech. Solids 12 (2005) 363-384. | MR | Zbl
and ,[9] The peridynamic equation of motion in nonlocal elasticity theory, in III European Conference on Computational Mechanics - Solids, Structures and Coupled Problems in Engineering, C.A. Mota Soares, J.A.C. Martins, H.C. Rodrigues, J.A.C. Ambrosio, C.A.B. Pina, C.M. Mota Soares, E.B.R. Pereira and J. Folgado Eds., Lisbon, Springer (2006).
and ,[10] On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun. Math. Sci. 5 (2007) 851-864. | MR | Zbl
and ,[11] Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force. Comp. Meth. Appl. Mech. Eng. 196 (2007) 4548-4560. | MR | Zbl
, , , , , and ,[12] A nonlocal vector calculus with application to nonlocal boundary value problems. Preprint (2009). | MR | Zbl
and ,[13] Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators. Springer, Berlin (1985). | Zbl
,[14] The boundary value problems of mathematical physics. Springer-Verlag, New York (1985). | MR | Zbl
,[15] Statistical coarse-graining of molecular dynamics into peridynamics. Technical Report, SAND2007-6410, Sandia National Laboratories, Albuquerque and Livermore (2007).
and ,[16] Force flux and the peridynamic stress tensor. J. Mech. Phys. Solids 56 (2008) 1566-1577. | MR | Zbl
and ,[17] Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | Zbl
,[18] The quasicontinuum method: Overview, applications, and current directions. J. Comp.-Aided Mater. Des. 9 (2002) 203-239.
and ,[19] Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48 (2000) 175-209. | MR | Zbl
,[20] Linearized theory of peridynamic states. Sandia National Laboratories, SAND (2009) 2009-2458. | MR | Zbl
,[21] Convergence of peridynamics to classical elasticity theory. J. Elasticity 93 (2008) 13-37. | MR | Zbl
and ,[22] Crack nucleation in a peridynamic solid. Preprint (2009).
, , and ,[23] The effect of long-range forces on the dynamics of a bar. J. Mech. Phys. Solids 53 (2005) 705-728. | MR | Zbl
and ,[24] Mathematical and Numerical Analysis of Peridynamic Models with Nonlocal Boundary Conditions. SIAM J. Numer. Anal. (submitted). | MR | Zbl
and ,Cité par Sources :