Multiscale analysis of linear evolution equations with applications to nonlocal models for heterogeneous media
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1425-1455.

The method of two scale convergence is implemented to study the homogenization of time-dependent nonlocal continuum models of heterogeneous media. Two integro-differential models are considered: the nonlocal convection-diffusion equation and the state-based peridynamic model in nonlocal continuum mechanics. The asymptotic analysis delivers both homogenized dynamics as well as strong approximations expressed in terms of a suitable corrector theory. The method provides a natural analog to that for the time-dependent local PDE models with highly oscillatory coefficients with the distinction that the driving operators considered in this work are bounded.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2015080
Classification : 74Q05, 74E05, 74H10, 45F99, 45P05
Mots-clés : Multiscale analysis, peridynamics, nonlocal equations, Navier equation, homogenization, heterogeneous materials, two-scale convergence
Du, Qiang 1 ; Lipton, Robert 2 ; Mengesha, Tadele 3

1 Department of Applied Physics and Applied Mathematics, Columbia University, New York, 10027, USA.
2 Department of Mathematics, Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, 70803, USA.
3 Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, USA.
@article{M2AN_2016__50_5_1425_0,
     author = {Du, Qiang and Lipton, Robert and Mengesha, Tadele},
     title = {Multiscale analysis of linear evolution equations with applications to nonlocal models for heterogeneous media},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1425--1455},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {5},
     year = {2016},
     doi = {10.1051/m2an/2015080},
     zbl = {1348.74287},
     mrnumber = {3554548},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2015080/}
}
TY  - JOUR
AU  - Du, Qiang
AU  - Lipton, Robert
AU  - Mengesha, Tadele
TI  - Multiscale analysis of linear evolution equations with applications to nonlocal models for heterogeneous media
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1425
EP  - 1455
VL  - 50
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2015080/
DO  - 10.1051/m2an/2015080
LA  - en
ID  - M2AN_2016__50_5_1425_0
ER  - 
%0 Journal Article
%A Du, Qiang
%A Lipton, Robert
%A Mengesha, Tadele
%T Multiscale analysis of linear evolution equations with applications to nonlocal models for heterogeneous media
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1425-1455
%V 50
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2015080/
%R 10.1051/m2an/2015080
%G en
%F M2AN_2016__50_5_1425_0
Du, Qiang; Lipton, Robert; Mengesha, Tadele. Multiscale analysis of linear evolution equations with applications to nonlocal models for heterogeneous media. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1425-1455. doi : 10.1051/m2an/2015080. http://www.numdam.org/articles/10.1051/m2an/2015080/

A. Aguiar and R. Fosdick, A constitutive model for a linearly elastic peridynamic body. Math. Mech. Solids 19 (2013) 502–523. | DOI | MR | Zbl

B. Alali and R. Lipton, Multiscale Analysis of Heterogeneous Media in the Peridynamic formulation. J. Elasticity 106 (2012) 71-103. | DOI | MR | Zbl

G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. | DOI | MR | Zbl

F. Andreu-Vaillo, J.M. Mazen, J.D. Rossi and J.J. Toledo-Melero, Nonlocal Diffusion Problems. In vol. 165 of Math. Surveys Monogr. AMS (2010). | MR | Zbl

P.W. Bates, P.C. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transitions. Arch. Ration. Mech. Anal. 138 (1997) 105–136. | DOI | MR | Zbl

F. Bobaru and S.A. Silling, Peridynamic 3D problems of nanofiber networks and carbon nanotube-reinforced composites. Materials and Design: Proceedings of Numiform. Amer. Institute Phys. (2004) 1565–1570.

F. Bobaru, S.A. Silling and H. Jiang, Peridynamic fracture and damage modeling of membranes and nanofiber networks. Vol. 5748 of Proc. of the XI International Conference on Fracture. Turin, Italy (2005) 1–6.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer (2011). | MR | Zbl

G.W. Clark and R.E. Showalter, Two-scale convergence of a model for flow in a partially fissured medium. Electron. J. Differ. Eq. 1999 (1999) 1–20. | MR | Zbl

Q. Du, Nonlocal calculus of variations and well-posedness of peridynamics. In Handbook of Peridynamic Modeling, edited by F. Bobaru, J. Foster, P. Geubelle and S. Silling. CRC Press (2016). | MR

Q. Du, M. Gunzburger, R.B. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54 (2012) 667–696. | DOI | MR | Zbl

Q. Du, M. Gunzburger, R.B. Lehoucq and K. Zhou, Analysis of the volume-constrained peridynamic Navier equation of linear elasticity. J. Elasticity 113 (2013) 193–217. | DOI | MR | Zbl

Q. Du, Z. Huang and R. Lehoucq, Nonlocal convection-diffusion volume-constrained problems and jump processes. Disc. Cont. Dyn. Sys. B 19 (2014) 373–389. | MR | Zbl

A. Visintin, Towards a two-scale calculus. ESAIM: COCV 12 (2006) 371–397. | Numdam | MR | Zbl

E. Weinan, Homogenization of linear and nonlinear transport equations. Comm. Pure Appl. Math. 45 (1992) 301–326. | DOI | MR | Zbl

E. Emmrich, R.B. Lehoucq and D. Puhst, Peridynamics: A Nonlocal Continuum Theory. Meshfree Methods for Partial Differential Equations VI. Lect. Notes Comput Sci Eng. 89 (2013) 45–65. | DOI | MR | Zbl

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Springer Verlag, New York (2000). | MR | Zbl

W. Gerstle, N. Sau and S.A. Silling, Peridynamic modeling of plain and reinforced concrete structures. SMiRT18: 18th lnt. Conf. Struct. Mech. React. Technol. Beijing (2005).

W. Hu, Y.D. Ha and F. Bobaru, Modeling dynamic fracture and damage in a fiber-reinforced composite lamina with peridynamics. Int. J. Multiscale Comput. Eng. 9 (2011) 707–726. | DOI

L. Ignat and J.D. Rossi, A nonlocal convection-diffusion equation. J. Funct. Anal. 251 (2007) 399–437. | DOI | MR | Zbl

B. Kilic, A. Agwai and E. Madenci, Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Compos. Struct. 90 (2009) 141–151. | DOI

R.B. Lehoucq and S.A. Silling, Force flux and the peridynamic stress tensor. J. Mech. Phys. Solids 56 (2008) 1566–1577. | DOI | MR | Zbl

D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002) 35–86. | MR | Zbl

T. Mengesha and Q. Du, Nonlocal constrained value problems for a linear peridynamic Navier equation. J. Elasticity 116 (2014) 27–51. | DOI | MR | Zbl

T. Mengesha and Q. Du, Multiscale analysis of a linear peridynamics solid. Commun. Math. Sci. 13 (2015) 1193 –1218. | DOI | MR | Zbl

F. Neubrander, Integrated semigroups and their application to the abstract Cauchy problem. Pacific J. Math. 135 (1988) 111–157. | DOI | MR | Zbl

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. | DOI | MR | Zbl

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Verlag (1983). | MR | Zbl

B. Schweizer and Veneroni, Homogenization of plasticity equations with two-scale convergence methods. Appl. Anal. Int. J. 94 (2015) 375–398. | DOI | MR | Zbl

R.E. Showalter, Distributed microstructure models of porous media. Flow in Porous Media: proceedings of the Oberwolfach Conference (1992), edited by U. Hornung. Vol. 114 of International Series of Numerical Mathematics. Birkhauser Verlag Basel (1993) 21–27. | MR | Zbl

S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48 (2000) 175–209. | DOI | MR | Zbl

S.A. Silling, Linearized theory of peridynamic states. J. Elast. 99 (2010) 85–111. | DOI | MR | Zbl

S.A. Silling, M. Epton, O. Weckner, J. Xu and E. Askari, Peridynamic states and constitutive modeling. J. Elast. 88 (2007) 151–184. | DOI | MR | Zbl

L. Tartar, Memory effects and homogenization. Arch. Rational Mech. Anal. 111 (1990) 121–133. | DOI | MR | Zbl

Cité par Sources :