A relaxation scheme for a hyperbolic multiphase flow model Part I: Barotropic EOS
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1763-1795.

This article is the first of two in which we develop a relaxation finite volume scheme for the convective part of the multiphase flow models introduced in the series of papers (Hérard, C.R. Math. 354 (2016) 954–959; Hérard, Math. Comput. Modell. 45 (2007) 732–755; Boukili and Hérard, ESAIM: M2AN 53 (2019) 1031–1059). In the present article we focus on barotropic flows where in each phase the pressure is a given function of the density. The case of general equations of state will be the purpose of the second article. We show how it is possible to extend the relaxation scheme designed in Coquel et al. (ESAIM: M2AN 48 (2013) 165–206) for the barotropic Baer–Nunziato two phase flow model to the multiphase flow model with N – where N is arbitrarily large – phases. The obtained scheme inherits the main properties of the relaxation scheme designed for the Baer–Nunziato two phase flow model. It applies to general barotropic equations of state. It is able to cope with arbitrarily small values of the statistical phase fractions. The approximated phase fractions and phase densities are proven to remain positive and a fully discrete energy inequality is also proven under a classical CFL condition. For N = 3, the relaxation scheme is compared with Rusanov’s scheme, which is the only numerical scheme presently available for the three phase flow model (see Boukili and Hérard, ESAIM: M2AN 53 (2019) 1031–1059). For the same level of refinement, the relaxation scheme is shown to be much more accurate than Rusanov’s scheme, and for a given level of approximation error, the relaxation scheme is shown to perform much better in terms of computational cost than Rusanov’s scheme. Moreover, contrary to Rusanov’s scheme which develops strong oscillations when approximating vanishing phase solutions, the numerical results show that the relaxation scheme remains stable in such regimes.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2019034
Classification : 76T30, 76T10, 76M12, 65M08, 35L60, 35Q35, 35F55
Mots-clés : Multiphase ows, compressible ows, hyperbolic PDEs, entropy-satisfying methods, relaxation techniques, Riemann problem, Riemann solvers, Godunov-type schemes, finite volumes
Saleh, Khaled 1

1
@article{M2AN_2019__53_5_1763_0,
     author = {Saleh, Khaled},
     title = {A relaxation scheme for a hyperbolic multiphase flow model {Part} {I:} {Barotropic} {EOS}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1763--1795},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {5},
     year = {2019},
     doi = {10.1051/m2an/2019034},
     mrnumber = {4011566},
     zbl = {1425.76288},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019034/}
}
TY  - JOUR
AU  - Saleh, Khaled
TI  - A relaxation scheme for a hyperbolic multiphase flow model Part I: Barotropic EOS
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1763
EP  - 1795
VL  - 53
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019034/
DO  - 10.1051/m2an/2019034
LA  - en
ID  - M2AN_2019__53_5_1763_0
ER  - 
%0 Journal Article
%A Saleh, Khaled
%T A relaxation scheme for a hyperbolic multiphase flow model Part I: Barotropic EOS
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1763-1795
%V 53
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019034/
%R 10.1051/m2an/2019034
%G en
%F M2AN_2019__53_5_1763_0
Saleh, Khaled. A relaxation scheme for a hyperbolic multiphase flow model Part I: Barotropic EOS. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1763-1795. doi : 10.1051/m2an/2019034. http://www.numdam.org/articles/10.1051/m2an/2019034/

M.R. Baer and J.W. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861–889. | DOI | Zbl

J.B. Bdzil, R. Menikoff, S.F. Son, A.K. Kapila and D.S. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: a critical examination of modeling issues. Phys. Fluids 11 (1999) 378–402. | DOI | Zbl

G. Berthoud, Vapor explosions. Annu. Rev. Fluid Mech. 32 (2000) 573–611. | DOI | Zbl

W. Bo, H. Jin, D. Kim, X. Liu, H. Lee, N. Pestieau, Y. Yu, J. Glimm and J.W. Grove, Comparison and validation of multi phase closure models. Comput. Math. Appl. 56 (2008) 1291–1302. | DOI | MR | Zbl

F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. In: Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004). | DOI | MR | Zbl

H. Boukili and J.-M. Hérard, Relaxation and simulation of a barotropic three-phase flow model. ESAIM: M2AN 53 (2019) 1031–1059. | DOI | Numdam | MR | Zbl

A. Chauvin, Étude expérimentale de l’atténuation d’une de choc par un nuage de gouttes et validation numérique. Ph.D. thesis, Aix-Marseille Université (2012).

A. Chauvin, G. Jourdan, E. Daniel, L. Houas and R. Tosello, Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium. Phys. Fluids 23 (2011) 113301. | DOI

F. Coquel, E. Godlewski, B. Perthame, A. In and P. Rascle, Some new Godunov and relaxation methods for two-phase flow problems. In: Godunov methods (Oxford, 1999). Kluwer/Plenum, New York, NY (2001) 179–188. | DOI | MR | Zbl

F. Coquel, E. Godlewski and N. Seguin, Relaxation of fluid systems. Math. Models Methods Appl. Sci. 22 (2012) 1250014. | DOI | MR | Zbl

F. Coquel, J.-M. Hérard and K. Saleh, A positive and entropy-satisfying finite volume scheme for the Baer-Nunziato model. J. Comput. Phys. 330 (2017) 401–435. | DOI | MR | Zbl

F. Coquel, J.-M. Hérard, K. Saleh and N. Seguin, A robust entropy-satisfying finite volume scheme for the isentropic Baer-Nunziato model. ESAIM: M2AN 48 (2013) 165–206. | DOI | Numdam | MR | Zbl

F. Crouzet, F. Daude, P. Galon, P. Helluy, J.-M. Hérard, O. Hurisse and Y. Liu, Approximate solutions of the baer-nunziato model. ESAIM: Procs. 40 (2013) 63–82. | DOI | MR | Zbl

S. Gavrilyuk and R. Saurel, Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175 (2002) 326–360. | DOI | MR | Zbl

H. Hérard and J.-M. Mathis, A three-phase flow model with two miscible phases. ESAIM: M2AN 53 (2019) 1373–1389. | DOI | Numdam | MR | Zbl

J.-M. Hérard, A three-phase flow model. Math. Comput. Modell. 45 (2007) 732–755. | DOI | MR | Zbl

J.-M. Hérard, A class of compressible multiphase flow models. C.R. Math. 354 (2016) 954–959. | DOI | MR | Zbl

J.-M. Hérard, K. Saleh and N. Seguin, Some mathematical properties of a hyperbolic multiphase flow model. Available at: https://hal.archives-ouvertes.fr/hal-01921027 (2018). | MR

Institut de Radioprotection et de Sûreté Nucléaire (IRSN). Reactivity Initiated Accident (RIA). Available at: http://www.irsn.fr/FR/connaissances/Installations_nucleaires/Les-centrales-nucleaires/criteres_surete_ria_aprp/Pages/1-accident-reactivite-RIA.aspx#.WquLBeYiFrk.

H. Mathis, A thermodynamically consistent model of a liquid-vapor fluid with a gas. ESAIM: M2AN 53 (2019) 63–84. | DOI | Numdam | MR | Zbl

R. Meignen, B. Raverdy, S. Picchi and J. Lamome, The challenge of modeling fuel – coolant interaction: Part II – steam explosion. Nucl. Eng. Des. 280 (2014) 528–541. | DOI

S. Müller, M. Hantke and P. Richter, Closure conditions for non-equilibrium multi-component models. Continuum Mech. Thermodyn. 28 (2016) 1157–1189. | DOI | MR | Zbl

K. Saleh, Analyse et Simulation Numérique par Relaxation d’Ecoulements Diphasiques Compressibles. Contribution au Traitement des Phases Evanescentes. Ph.D. thesisUniversité Pierre et Marie Curie, Paris VI (2012). Available at: https://tel.archives-ouvertes.fr/tel-00761099/

D.W. Schwendeman, C.W. Wahle and A.K. Kapila, The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212 (2006) 490–526. | DOI | MR | Zbl

I. Suliciu, On modelling phase transitions by means of rate-type constitutive equations. Shock wave structure. Int. J. Eng. Sci. 28 (1990) 829–841. | DOI | MR | Zbl

I. Suliciu, Some stability-instability problems in phase transitions modelled by piecewise linear elastic or viscoelastic constitutive equations. Int. J. Eng. Sci. 30 (1992) 483–494. | DOI | MR | Zbl

S.A. Tokareva and E.F. Toro, HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow. J. Comput. Phys. 229 (2010) 3573–3604. | DOI | MR | Zbl

U.S. NRC: Glossary, Departure from Nucleate Boiling (DNB). Available at: http://www.nrc.gov/reading-rm/basic-ref/glossary/departure-from-nucleate-boiling-dnb.html.

U.S. NRC: Glossary, Loss of Coolant Accident (LOCA). Available at: http://www.nrc.gov/reading-rm/basic-ref/glossary/loss-of-coolant-accident-loca.html.

Cité par Sources :