A three-phase flow model with two miscible phases
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 4, pp. 1373-1389.

The paper concerns the modelling of a compressible mixture of a liquid, its vapor and a gas. The gas and the vapor are miscible while the liquid is immiscible with the gaseous phases. This assumption leads to non symmetric constraints on the void fractions. We derive a three-phase three-pressure model endowed with an entropic structure. We show that interfacial pressures are uniquely defined and propose entropy-consistent closure laws for the source terms. Naturally one exhibits that the mechanical relaxation complies with Dalton’s law on the phasic pressures. Then the hyperbolicity and the eigenstructure of the homogeneous model are investigated and we prove that it admits a symmetric form leading to a local existence result. We also derive a barotropic variant which possesses similar properties.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2019028
Classification : 76T30, 35L60, 35Q35
Mots-clés : Multi-component compressible flows, entropy, relaxation, phase transition, miscibility constraint, closure conditions, hyperbolicity
Hérard, J.-M. 1 ; Mathis, H. 1

1
@article{M2AN_2019__53_4_1373_0,
     author = {H\'erard, J.-M. and Mathis, H.},
     title = {A three-phase flow model with two miscible phases},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1373--1389},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {4},
     year = {2019},
     doi = {10.1051/m2an/2019028},
     zbl = {1423.76479},
     mrnumber = {3980063},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019028/}
}
TY  - JOUR
AU  - Hérard, J.-M.
AU  - Mathis, H.
TI  - A three-phase flow model with two miscible phases
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1373
EP  - 1389
VL  - 53
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019028/
DO  - 10.1051/m2an/2019028
LA  - en
ID  - M2AN_2019__53_4_1373_0
ER  - 
%0 Journal Article
%A Hérard, J.-M.
%A Mathis, H.
%T A three-phase flow model with two miscible phases
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1373-1389
%V 53
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019028/
%R 10.1051/m2an/2019028
%G en
%F M2AN_2019__53_4_1373_0
Hérard, J.-M.; Mathis, H. A three-phase flow model with two miscible phases. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 4, pp. 1373-1389. doi : 10.1051/m2an/2019028. http://www.numdam.org/articles/10.1051/m2an/2019028/

[1] M.R. Baer and J.W. Nunziato, A two phase mixture theory for the deflagration to detonation (ddt) transition in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861–889. | DOI | Zbl

[2] T. Barberon and P. Helluy, Finite volume simulation of cavitating flows. Comput. Fluids 34 (2005) 832–858. | DOI | Zbl

[3] D. Bothe and W. Dreyer, Continuum thermodynamics of chemically reacting fluid mixtures. Acta Mech. 226 (2015) 1757–1805. | DOI | MR | Zbl

[4] Y. Chen, Y.-F. Deng, J. Glimm, G. Li, Q. Zhang and D.H. Sharp, A renormalization group scaling analysis for compressible two-phase flow. Phys. Fluids A 5 (1993) 2929–2937. | DOI | MR | Zbl

[5] F. Coquel, J.-M. Hérard, K. Saleh and N. Seguin, A class of two-fluid two-phase flow models. In: 42nd AIAA Fluid Dynamics Conference and Exhibit, Fluid Dynamics and Co-located Conferences Available at: (2012). | DOI

[6] F. Coquel, J.-M. Hérard, K. Saleh and N. Seguin, Two properties of two-velocity two-pressure models for two-phase flows. Commun. Math. Sci. 12 (2014) 593–600. | DOI | MR | Zbl

[7] S. Dellacherie, Relaxation schemes for the multicomponent Euler system. ESAIM: M2AN 37 (2003) 909–936. | DOI | Numdam | MR | Zbl

[8] D.A. Drew, Mathematical modeling of two-phase flow. Ann. Rev. Fluid Mech. 15 (1983) 261–291. | DOI | Zbl

[9] D.A. Drew and S.L. Passman, Theory of multicomponent fluids. In: Vol. 135 of Applied Mathematical Sciences. Springer-Verlag, New York (1999). | MR | Zbl

[10] P. Embid and M. Baer, Mathematical analysis of a two-phase continuum mixture theory. Contin. Mech. Thermodyn. 4 (1992) 279–312. | DOI | MR | Zbl

[11] T. Flåtten and H. Lund, Relaxation two-phase flow models and the subcharacteristic condition. Math. Models Methods Appl. Sci. 21 (2011) 2379–2407. | DOI | MR | Zbl

[12] T. Gallouët, J.-M. Hérard and N. Seguin, Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Models Methods Appl. Sci. 14 (2004) 663–700. | DOI | MR | Zbl

[13] S. Gavrilyuk, The structure of pressure relaxation terms: the one-velocity case Technical report, EDF, H-I83-2014-0276-EN (2014).

[14] S. Gavrilyuk and R. Saurel, Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175 (2002) 326–360. | DOI | MR | Zbl

[15] S.L. Gavrilyuk, N.I. Makarenko and S.V. Sukhinin, Waves in continuous media. Lecture Notes in Geosystems Mathematics and Computing. Birkhäuser/Springer, Cham (2017). | DOI | MR

[16] U. S. NRC: Glossary. Reactivity initiated accident (ria). https://www.irsn.fr/FR/connaissances/Installations_nucleaires/Les-centrales-nucleaires/criteres_surete_ria_aprp/Pages/1-accident-reactivite-RIA.aspx#.XAkgQq17SE8.

[17] V. Guillemaud, Modelling and numerical simulation of two-phase flows using the two-fluid two-pressure approach. Theses, Université de Provence – Aix-Marseille I (2007).

[18] E. Han, M. Hantke and S. Müller, Efficient and robust relaxation procedures for multi-component mixtures including phase transition. J. Comput. Phys. 338 (2017) 217–239. | DOI | MR | Zbl

[19] M. Hantke and S. Müller, Analysis and simulation of a new multi-component two-phase flow model with phase transitions and chemical reactions. Quart. Appl. Math. 76 (2018) 253–287. | DOI | MR | Zbl

[20] M. Hantke and S. Müller, Closure conditions for a one temperature non-equilibrium multi-component model of Baer-Nunziato type. To appear in: ESAIM Procs. (2019). | MR

[21] J.-M. Hérard, A three-phase flow model. Math. Comput. Model. 45 (2007) 732–755. | DOI | MR | Zbl

[22] J.-M. Hérard, Un modèle hyperbolique diphasique bi-fluide en milieu poreux. C.R. Méc. 742 (2008) 623–683.

[23] J.-M. Hérard, A class of compressible multiphase flow models. C.R. Math. Acad. Sci. Paris 354 (2016) 954–959. | DOI | MR | Zbl

[24] O. Hurisse and L. Quibel, A homogeneous model for compressible three-phase flows involving heat and mass transfer. To appear in: ESAIM Procs. (2019). | MR

[25] K. Hutter and K. Jöhnk, Continuum Methods of Physical Modeling. Continuum Mechanics, Dimensional Analysis, Turbulenc. Springer-Verlag, Berlin (2004). | DOI | MR | Zbl

[26] D. Iampietro, Contribution to the simulation of low-velocity compressible two-phase flows with high pressure jumps using homogeneous and two-fluid approaches. Theses, Aix-Marseille Université (2018).

[27] A.K. Kapila, R. Menikoff, J.B. Bdzil, S.F. Son and D.S. Stewart, Two-phase modelling of ddt in granular materials: reduced equations. Phys. Fluids 13 (2001) 3002–3024. | DOI | Zbl

[28] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58 (1975) 181–205. | DOI | MR | Zbl

[29] H. Lochon, Modelling and simulation of steam-water transients using the two-fluid approach. Theses, Aix Marseille Université (2016).

[30] H. Lochon, F. Daude, P. Galon and J.-M. Hérard, Computation of fast depressurization of water using a two-fluid model: revisiting Bilicki modelling of mass transfer. Comput. Fluids 156 (2017) 162–174. | DOI | MR | Zbl

[31] H. Mathis, A thermodynamically consistent model of a liquid-vapor fluid with a gas. ESAIM: M2AN 53 (2019) 63–84. | DOI | Numdam | MR | Zbl

[32] S. Müller, M. Hantke and P. Richter, Closure conditions for non-equilibrium multi-component models. Contin. Mech. Thermodyn. 28 (2016) 1157–1189. | DOI | MR | Zbl

[33] S. Müller, P. Helluy and J. Ballmann, Numerical simulation of a single bubble by compressible two-phase fluids. Int. J. Numer. Methods Fluids 62 (2010) 591–631. | DOI | MR | Zbl

[34] M. Pelanti, K.-M. Shyue and T. Flåtten, A numerical model for three-phase liquid-vapor-gas flows with relaxation processes. Hyp2016 | Zbl

[35] K. Saleh, A relaxation scheme for a hyperbolic multiphase flow model. Part I: Barotropic eos. To appear in: ESAIM: M2AN (2019). | Numdam | MR | Zbl

Cité par Sources :