A thermodynamically consistent model of a liquid-vapor fluid with a gas
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 1, pp. 63-84.

This work is devoted to the consistent modeling of a three-phase mixture of a gas, a liquid and its vapor. Since the gas and the vapor are miscible, the mixture is subjected to a non-symmetric constraint on the volume. Adopting the Gibbs formalism, the study of the extensive equilibrium entropy of the system allows to recover the Dalton’s law between the two gaseous phases. In addition, we distinguish whether phase transition occurs or not between the liquid and its vapor. The thermodynamical equilibria are described both in extensive and intensive variables. In the latter case, we focus on the geometrical properties of equilibrium entropy. The consistent characterization of the thermodynamics of the three-phase mixture is used to introduce two Homogeneous Equilibrium Models (HEM) depending on mass transfer is taking into account or not. Hyperbolicity is investigated while analyzing the entropy structure of the systems. Finally we propose two Homogeneous Relaxation Models (HRM) for the three-phase mixtures with and without phase transition. Supplementary equations on mass, volume and energy fractions are considered with appropriate source terms which model the relaxation towards the thermodynamical equilibrium, in agreement with entropy growth criterion.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018044
Classification : 76T30, 80A10, 35Q79
Mots-clés : Multiphase flows, entropy, thermodynamics of equilibrium, phase transition, homogeneous equilibrium model, hyperbolicity, homogeneous relaxation model
Mathis, Hélène 1

1
@article{M2AN_2019__53_1_63_0,
     author = {Mathis, H\'el\`ene},
     title = {A thermodynamically consistent model of a liquid-vapor fluid with a gas},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {63--84},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {1},
     year = {2019},
     doi = {10.1051/m2an/2018044},
     zbl = {1418.76054},
     mrnumber = {3933915},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018044/}
}
TY  - JOUR
AU  - Mathis, Hélène
TI  - A thermodynamically consistent model of a liquid-vapor fluid with a gas
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 63
EP  - 84
VL  - 53
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018044/
DO  - 10.1051/m2an/2018044
LA  - en
ID  - M2AN_2019__53_1_63_0
ER  - 
%0 Journal Article
%A Mathis, Hélène
%T A thermodynamically consistent model of a liquid-vapor fluid with a gas
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 63-84
%V 53
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018044/
%R 10.1051/m2an/2018044
%G en
%F M2AN_2019__53_1_63_0
Mathis, Hélène. A thermodynamically consistent model of a liquid-vapor fluid with a gas. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 1, pp. 63-84. doi : 10.1051/m2an/2018044. http://www.numdam.org/articles/10.1051/m2an/2018044/

[1] G. Allaire, G. Faccanoni and S. Kokh, A strictly hyperbolic equilibrium phase transition model. C. R. Math. Acad. Sci. Paris 344 (2007) 135–140. | DOI | MR | Zbl

[2] M. Bachmann, S. Müller, P. Helluy and H. Mathis, A simple model for cavitation with non-condensable gases. Hyperbolic problems: theory, numerics and applications. I. In Vol. 17 of Computational Methods in Applied Mathematics (CMAM). World Sci. Publishing, Singapore (2012) 289–296. | MR | Zbl

[3] M.R. Baer and J.W. Nunziato, A two phase mixture theory for the deflagration to detonation (ddt) transition in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861–889. | DOI | Zbl

[4] T. Barberon and P. Helluy, Finite volume simulation of cavitating flows. Comput. Fluids 34 (2005) 832–858. | DOI | Zbl

[5] J. Bartak, A study of the rapid depressurization of hot water and the dynamics of vapour bubble generation in superheated water. Int. J. Multiph. Flow 16 (1990) 789–98. | DOI | Zbl

[6] H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edition. Wiley and Sons (1985).

[7] F. Caro, Modélisation et simulation numérique des transitions de phase liquide-vapeur. Ph.D. thesis, École polytechnique (2004).

[8] F. Coquel and B. Perthame, Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics. SIAM J. Numer. Anal. 35 (1998) 2223–2249. | DOI | MR | Zbl

[9] J.-P. Croisille, Contribution à l’étude théorique et à l’approximation par éléments finis du système hyperbolique de la dynamique des gaz multidimensionnelle et multiespèces. Ph.D. thesis, Université Paris VI (1991).

[10] S. Dellacherie, Relaxation schemes for the multicomponent Euler system. ESAIM: M2AN 37 (2003) 909–936. | DOI | Numdam | MR | Zbl

[11] S. Dellacherie and N. Rency, Relations de fermeture pour le système des équations d’euler multi-espèces. construction et étude de schémas de relaxation en multi-espèces et en multi-constituants. Technical report, Rapport CEA externe CEA-R-5999 (2001).

[12] W. Dreyer, F. Duderstadt, M. Hantke and G. Warnecke, Bubbles in liquids with phase transition. Part 1: On phase change of a single vapor bubble in liquid water. Contin. Mech. Thermodyn. 24 (2012) 461–483. | DOI | MR | Zbl

[13] W. Dreyer, M. Hantke and G. Warnecke, Bubbles in liquids with phase transition. Part 2: on balance laws for mixture theories of disperse vapor bubbles in liquid with phase change. Contin. Mech. Thermodyn. 26 (2014) 521–549. | DOI | MR | Zbl

[14] L.C. Evans, A survey of entropy methods for partial differential equations. Bull. Amer. Math. Soc. (N.S.) 41 (2004) 409–438. | DOI | MR | Zbl

[15] G. Faccanoni, S. Kokh and G. Allaire, Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium. ESAIM: M2AN 46 (2012) 1029–1054. | DOI | Numdam | MR | Zbl

[16] T. Flåtten and H. Lund, Relaxation two-phase flow models and the subcharacteristic condition. Math. Models Methods Appl. Sci. 21 (2011) 2379–2407. | DOI | MR | Zbl

[17] S. Gavrilyuk and R. Saurel, Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175 (2002) 326–360. | DOI | MR | Zbl

[18] J.W. Gibbs, The Collected Works of J. Willar Gibbs, vol. I: Thermodynamics. Yale University Press (1948). | Zbl

[19] E. Godlewski and P.-A. Raviart, Hyperbolic systems of conservation laws, Mathématiques & Applications (Paris) [Mathematics and Applications]. Ellipses, Paris (1991). | MR

[20] E. Han, M. Hantke and S. Müller, Efficient and robust relaxation procedures for multi-component mixtures including phase transition. J. Comput. Phys. 338 (2017) 217–239. | DOI | MR | Zbl

[21] P. Helluy, O. Hurisse and E. Le Coupanec, Verification of a two-phase flow code based on an homogeneous model. Int. J. Finite. In: EDF Special Workshop (2015). Preprint https://hal.archives-ouvertes.fr/hal-01396200 | MR | Zbl

[22] P. Helluy and J. Jung, Interpolated pressure laws in two-fluid simulations and hyperbolicity. In Finite Volumes for Complex Applications. VII. Methods and Theoretical Aspects. Vol. 77 of Springer Proceedings in Mathematics & Statistics. Springer, Cham (2014) 37–53. | MR | Zbl

[23] P. Helluy and H. Mathis, Pressure laws and fast Legendre transform, Math. Models Methods Appl. Sci. 21 (2011) 745–775. | DOI | MR | Zbl

[24] P. Helluy and N. Seguin, Relaxation models of phase transition flows. ESAIM: M2AN 40 (2006) 331–352. | DOI | Numdam | MR | Zbl

[25] J.-M. Hérard, A three-phase flow model. Math. Comput. Modelling 45 (2007) 732–755. | DOI | MR | Zbl

[26] J.-M. Hérard, A class of compressible multiphase flow models. C. R. Math. Acad. Sci. Paris 354 (2016) 954–959. | DOI | MR | Zbl

[27] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis. Abridged version of it Convex analysis and minimization algorithms. I [Springer, Berlin, 1993; MR1261420 (95m:90001)] and it II [ibid.; MR1295240 (95m:90002)]. Grundlehren Text Editions. Springer-Verlag, Berlin (2001). | MR | Zbl

[28] O. Hurisse, Application of an homogeneous model to simulate the heating of two-phase flows. Int. J. Finite 11 (2014) 37. | MR | Zbl

[29] O. Hurisse, Numerical simulations of steady and unsteady two-phase flows using a homogeneous model. Comput. Fluids 152 (2017) 88–103. | DOI | MR | Zbl

[30] O. Hurisse and L. Quibel, A homogeneous model for compressible three-phase flows involving heat and mass transfer (2018). | MR

[31] S. Jaouen, Étude mathématique et numérique de stabilité pour des modèles hydrodynamiques avec transition de phase. Ph.D. thesis, Pierre et Marie Curie, University, Paris VI, France (2001).

[32] J. Jung, Schémas numériques adaptés aux accélérateurs mutlicoeurs pour les écoulements bifluides. Ph.D. thesis, Université de Strasbourg (2013).

[33] A.K. Kapila, R. Menikoff, J.B. Bdzil, S.F. Son and D.S. Stewart, Two-phase modelling of ddt in granular materials: reduced equations. Phys. Fluids 13 (2001) 3002–3024. | DOI | Zbl

[34] F. Lagoutière, Modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants. Ph.D. thesis, Pierre et Marie Curie University, Paris VI, France (2000).

[35] H. Lochon, Modelling and simulation of steam-water transients using the two-fluid approach, Theses, Aix Marseille Université (October, 2016).

[36] H. Mathis, Étude théorique et numérique des écoulements avec transition de phase. Institut de Recherche Mathématique Avancée. Université de Strasbourg, Strasbourg, 2010, Thèse, Université Louis Pasteur, Strasbourg (2010). | MR | Zbl

[37] R. Menikoff and B.J. Plohr, The Riemann problem for fluid flow of real materials. Rev. Modern Phys. 61 (1989) 75–130. | DOI | MR | Zbl

[38] I. Müller and W.H. Müller, Fundamentals of Thermodynamics and Applications. Springer-Verlag, Berlin (2009). | MR

[39] S. Müller, M. Hantke and P. Richter, Closure conditions for non-equilibrium multi-component models. Contin. Mech. Thermodyn. 28 (2016) 1157–1189. | DOI | MR | Zbl

[40] S. Müller and A. Voß, The Riemann problem for the Euler equations with nonconvex and nonsmooth equation of state: construction of wave curves. SIAM J. Sci. Comput. 28 (2006) 651–681. | DOI | MR | Zbl

[41] T. Flåtten, M. Pelanti and K.-M. Shyue, A numerical model for three-phase liquid-vapor-gas flows with relaxation processes, in Theory, Numerics and Applications of Hyperbolic Problems II. HYP 2016, edited by C. Klingenberg, and M. Westdickenberg. In: Vol. 237 of Springer Proceedings in Mathematics & Statistics. Springer, Cham (2018). | DOI | MR | Zbl

[42] R.T. Rockafellar, Convex analysis. In: Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ (1997). Reprint of the 1970 original, Princeton Paperbacks. | MR | Zbl

[43] H. Söhnholz, Thermal effects in laser-generated cavitation. Ph.D. thesis, University of Göttingen, Gernamy (2016)..

[44] A. Voß, Exact Riemann solution for the Euler equations with non-convex and non-smooth equation of state. Ph.D. thesis, RWTH Aachen (2005).

[45] M. Xie, Thermodynamic and gasdynamic aspects of a boiling liquid expanding vapour explosion. Ph.D. thesis, TU Delft, Delft University of Technology (2013).

Cité par Sources :