This paper presents an a posteriori error analysis for the discontinuous in time space–time scheme proposed by Jamet for the heat equation in multi-dimensional, non-cylindrical domains Jamet (SIAM J. Numer. Anal. 15 (1978) 913–928). Using a Clément-type interpolant, we prove abstract a posteriori error bounds for the numerical error. Furthermore, in the case of two-dimensional spatial domains we transform the problem into an equivalent one, of parabolic type, with space-time dependent coefficients but posed on a cylindrical domain. We formulate a discontinuous in time space–time scheme and prove a posteriori error bounds of optimal order. The a priori estimates of Evans (American Mathematical Society (1998)) for general parabolic initial and boundary value problems are used in the derivation of the upper bound. Our lower bound coincides with that of Picasso (Comput. Meth. Appl. Mech. Eng. 167 (1998) 223–237), proposed for adaptive, Runge-Kutta finite element methods for linear parabolic problems. Our theoretical results are verified by numerical experiments.
Mots-clés : Heat equation, space-time discontinuous Galerkin methods, a posteriori error estimates, non-cylindrical domains
@article{M2AN_2019__53_2_523_0, author = {Antonopoulou, Dimitra and Plexousakis, Michael}, title = {A posteriori analysis for space-time, discontinuous in time {Galerkin} approximations for parabolic equations in a variable domain}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {523--549}, publisher = {EDP-Sciences}, volume = {53}, number = {2}, year = {2019}, doi = {10.1051/m2an/2018059}, mrnumber = {3942174}, zbl = {1426.65138}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2018059/} }
TY - JOUR AU - Antonopoulou, Dimitra AU - Plexousakis, Michael TI - A posteriori analysis for space-time, discontinuous in time Galerkin approximations for parabolic equations in a variable domain JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2019 SP - 523 EP - 549 VL - 53 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2018059/ DO - 10.1051/m2an/2018059 LA - en ID - M2AN_2019__53_2_523_0 ER -
%0 Journal Article %A Antonopoulou, Dimitra %A Plexousakis, Michael %T A posteriori analysis for space-time, discontinuous in time Galerkin approximations for parabolic equations in a variable domain %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2019 %P 523-549 %V 53 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2018059/ %R 10.1051/m2an/2018059 %G en %F M2AN_2019__53_2_523_0
Antonopoulou, Dimitra; Plexousakis, Michael. A posteriori analysis for space-time, discontinuous in time Galerkin approximations for parabolic equations in a variable domain. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 523-549. doi : 10.1051/m2an/2018059. http://www.numdam.org/articles/10.1051/m2an/2018059/
[1] Finite difference schemes for the “Parabolic” equation in a variable depth environment with a rigid bottom boundary condition. SIAM J. Numer. Anal. 39 (2001) 539–565. | DOI | MR | Zbl
, and ,[2] Galerkin time-stepping methods for nonlinear parabolic equations. ESAIM: M2AN 38 (2004) 261–289. | DOI | Numdam | MR | Zbl
and ,[3] Diagonally Implicit Runge-Kutta methods for stiff O.D.E’.S. SINUM 14 (1977) 1006–1021. | DOI | MR | Zbl
,[4] Theory and numerical analysis of parabolic approximations. Ph.D. thesis, Department of Mathematics, University of Athens, Greece (2006).
,[5] Galerkin methods for Parabolic and Schrödinger Equations with dynamical boundary conditions and applications to underwater acoustics. SIAM J. Numer. Anal. 47 (2009) 2752–2781. | DOI | MR | Zbl
, and ,[6] Crank-Nicolson finite element discretizations for a 2D linear Schrödinger-type equation posed in a noncylindrical domain. Math. Comput. 84 (2015) 1571–1598. | DOI | MR | Zbl
, , and ,[7] Discontinuous Galerkin methods for the linear Schrödinger equation in non-cylindrical domains. Numer. Math. 115 (2010) 585–608. | DOI | MR | Zbl
and ,[8] Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements. SIAM J. Numer. Anal. 29 (1992) 947–964. | DOI | MR | Zbl
, and ,[9] Moving Finite Elements, Monographs on Numerical Analysis. The Clarendon Press, Oxford University Press, Oxford Science Publications, New York, NY (1994). | DOI | MR | Zbl
,[10] Estimateurs a posteriori d’ erreur pour le calcul adaptif d’écoulements quasi-newtoniens. RAIRO Model. Math. Anal. Numer. 25 (1991) 31–48. | DOI | Numdam | MR | Zbl
and ,[11] Optimal finite element interpolation on curved domains. SIAM J. Numer. Anal. 26 (1989) 1212–1240. | DOI | MR | Zbl
,[12] -version discontinuous Galerkin methods for hyperbolic conservation laws: a parallel strategy. Internat. J. Numer. Methods Eng. 38 (1995) 3889–3908. | DOI | MR | Zbl
, and ,[13] hp-version discontinuous Galerkin methods for hyperbolic conservation laws. Comput. Methods Appl. Mech. Eng. 133 (1996) 259–286. | DOI | MR | Zbl
, and ,[14] A parallel hp-adaptive discontinuous Galerkin method for hyperbolic conservation laws. Appl. Numer. Math. 20 (1996) 321–386. | DOI | MR | Zbl
, and ,[15] The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, NY (1991). | MR | Zbl
and ,[16] Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84. | Numdam | MR | Zbl
,[17] The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440–2463. | DOI | MR | Zbl
and ,[18] Sur l’approximation des equations diffeŕentielles opeŕationnelles lineáires par des methodes de Runge Kutta, These, University Paris VI, Paris (1975).
,[19] Partial Differential Equations, American Mathematical Society, Providence, RI (1998). | MR | Zbl
,[20] On a unified theory of boundary value problems for elliptic–parabolic equations of second order. In: Boundary Problems in Differential Equations. University of Wisconsin Press, Madison, WI (1960). | MR | Zbl
,[21] Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of Conservation Laws. Research Report No. 2012-07, ETHZ (2012). | MR | Zbl
and ,[22] Entropy-stable space-time DG schemes for non-conservative hyperbolic systems. ESAIM: M2AN 52 (2018) 995–1022. | DOI | Numdam | MR | Zbl
, and ,[23] Numerical methods and existence theorems for parabolic differential equations whose coefficients are singular on the boundary. Math. Comput. 22 (1968) 721–743. | DOI | MR | Zbl
,[24] Estimation d’erreur pour des éléments finis droits presque dégénérés. Rev. Francaise Automat. Informat. Recherche Opérationelle Sér. Rouge Anal. Numér. 10 (1976) 43–61. | Numdam | MR | Zbl
,[25] Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15 (1978) 913–928. | DOI | MR | Zbl
,[26] A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous galerkin method. Math. Comput. 67 (1998) 479–499. | DOI | MR | Zbl
and ,[27] A posteriori error estimates for a Discontinuous Galerkin approximation of second-order Elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374–2399. | DOI | MR | Zbl
and ,[28] Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations. J. Comput. Phys. 217 (2006) 589–611. | DOI | MR | Zbl
, and ,[29] On a finite element method for solving the neutron transport equation, edited by . In: Mathematical Aspects of Finite Elements in Partial Differential Equations. Academic Press, New York, NY (1974). | DOI | MR | Zbl
and ,[30] Sur les problemes mixtes pour certains systemes paraboliques dans des ouverts non cylindriques. Ann. Inst. Fourier 7 (1957) 143–182. | DOI | Numdam | MR | Zbl
,[31] A posteriori error analysis for higher order dissipative methods for evolution problems. Numer. Math. 104 (2006) 489–514. | DOI | MR | Zbl
and ,[32] On the convergence of space-time discontinuous galerkin schemes for scalar conservation laws. SIAM J. Numer. Anal. 54 (2016) 2452–2465. | DOI | MR | Zbl
and ,[33] Methodes d’approximation des solutions de certains problemes aux limites lineaires. Rend. Sem. Mat. Univ. Padova, XL 40 (1968) 1–138. | Numdam | MR | Zbl
,[34] Moving finite elements, II. SINUM 18 (1981) 1033–1057. | DOI | MR | Zbl
,[35] Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25 (2005) 129–155. | MR | Zbl
and ,[36] Adaptive finite elements for a linear parabolic problem. Comput. Meth. Appl. Mech. Eng. 167 (1998) 223–237. | DOI | MR | Zbl
,[37] Triangular mesh methods for the neutron transport equation. Tech. Report LA-UR-73-479. Los Alamos Scientific Laboratory (1973).
and ,[38] A posteriori error estimation for p-version time-stepping methods for parabolic partial differential equations. Numer. Math. 115 (2010) 475–509. | DOI | MR | Zbl
and ,[39] A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes. J. Comput. Phys. 319 (2016) 294–323. | DOI | MR | Zbl
and ,[40] Arbitrary high order accurate space-time discontinuous Galerkin finite element schemes on staggered unstructured meshes for linear elasticity. J. Comput. Phy. 366 (2018) 386–414. | DOI | MR | Zbl
and ,[41] Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows I. general formulation. J. Comp. Phys. 182 (2002) 546–585. | MR | Zbl
and ,[42] Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows II. efficient flux quadrature. Comput. Methods Appl. Mech. Eng. 191 (2002) 4747–4780. | DOI | MR | Zbl
and ,[43] error estimators for the Stokes equations. Numer. Math. 55 (1989) 309–325. | DOI | MR | Zbl
,Cité par Sources :