The aim of this paper is to provide the correctors associated to the homogenization of a parabolic problem describing the heat transfer. The results here complete the earlier study in [Jose, Rev. Roumaine Math. Pures Appl. 54 (2009) 189-222] on the asymptotic behaviour of a problem in a domain with two components separated by an ε-periodic interface. The physical model established in [Carslaw and Jaeger, The Clarendon Press, Oxford (1947)] prescribes on the interface the condition that the flux of the temperature is proportional to the jump of the temperature field, by a factor of order εγ. We suppose that -1 < γ ≤ 1. As far as the energies of the homogenized problems are concerned, we consider the cases -1 < γ < 1 and γ = 1 separately. To obtain the convergence of the energies, it is necessary to impose stronger assumptions on the data. As seen in [Jose, Rev. Roumaine Math. Pures Appl. 54 (2009) 189-222] and [Faella and Monsurrò, Topics on Mathematics for Smart Systems, World Sci. Publ., Hackensack, USA (2007) 107-121] (also in [Donato et al., J. Math. Pures Appl. 87 (2007) 119-143]), the case γ = 1 is more interesting because of the presence of a memory effect in the homogenized problem.
Mots clés : periodic homogenization, correctors, heat equation, interface problems
@article{M2AN_2010__44_3_421_0, author = {Donato, Patrizia and Jose, Editha C.}, title = {Corrector results for a parabolic problem with a memory effect}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {421--454}, publisher = {EDP-Sciences}, volume = {44}, number = {3}, year = {2010}, doi = {10.1051/m2an/2010008}, mrnumber = {2666650}, zbl = {1195.35038}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2010008/} }
TY - JOUR AU - Donato, Patrizia AU - Jose, Editha C. TI - Corrector results for a parabolic problem with a memory effect JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2010 SP - 421 EP - 454 VL - 44 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2010008/ DO - 10.1051/m2an/2010008 LA - en ID - M2AN_2010__44_3_421_0 ER -
%0 Journal Article %A Donato, Patrizia %A Jose, Editha C. %T Corrector results for a parabolic problem with a memory effect %J ESAIM: Modélisation mathématique et analyse numérique %D 2010 %P 421-454 %V 44 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2010008/ %R 10.1051/m2an/2010008 %G en %F M2AN_2010__44_3_421_0
Donato, Patrizia; Jose, Editha C. Corrector results for a parabolic problem with a memory effect. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 3, pp. 421-454. doi : 10.1051/m2an/2010008. http://www.numdam.org/articles/10.1051/m2an/2010008/
[1] Macroscopic modelling of heat transfer in composites with interfacial thermal barrier. International J. Heat Mass Transfer 37 (1994) 2885-2892. | Zbl
and ,[2] Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978). | Zbl
, and ,[3] Correctors for the homogenization of the wave and heat equations. J. Math. Pures Appl. 8 (1992) 197-231. | Zbl
, and ,[4] H-convergence in Perforated Domains, in Nonlinear Partial Differential Equations and Their Applications - Collège de France Seminar XIII, D. Cioranescu and J.L. Lions Eds., Pitman Research Notes in Mathematics Series 391, Longman, New York, USA (1998) 62-100. | Zbl
, and ,[5] Conduction of heat in solids. The Clarendon Press, Oxford, UK (1947). | Zbl
and ,[6] Homogénéisation du problème de Neumann non homogène dans des ouverts perforés. Asymptot. Anal. 1 (1988) 115-138. | Zbl
and ,[7] Exact internal controllability in perforated domains. J. Math. Pures Appl. 68 (1989) 185-213. | Zbl
and ,[8] An Introduction to Homogenization, Oxford Lecture Series in Mathematics and its Applications 17. Oxford Univ. Press, New York, USA (1999). | Zbl
and ,[9] Homogenization in open sets with holes. J. Math. Anal. Appl. 71 (1979) 590-607. | Zbl
and ,[10] Homogenization of Reticulated Structures. Springer-Verlag, New York (1999). | Zbl
and ,[11] Homogenization and corrector for the wave equation in domains with small holes. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2 (1999) 251-293. | Numdam | Zbl
, , and ,[12] Some corrector results for composites with imperfect interface. Rend. Math. Ser. VII 26 (2006) 189-209. | Zbl
,[13] Homogenization of two heat conductors with an interfacial contact resistance. Anal. Appl. 2 (2004) 1-27. | Zbl
and ,[14] Approximate controllability of linear parabolic equations in perforated domains. ESAIM: COCV 6 (2001) 21-38. | Numdam | Zbl
and ,[15] Homogenization and correctors for the heat equation in perforated domains. Chin. Ann. Math. B 25 (2004) 143-156. | Zbl
and ,[16] Homogenization of bounded solutions of elliptic equations with quadratic growth in periodically perforated domains. Asymptot. Anal. 16 (1998) 223-243. | Zbl
, and ,[17] Homogenization of the wave equation in composites with imperfect interface: a memory effect. J. Math. Pures Appl. 87 (2007) 119-143. | Zbl
, and ,[18] Correctors for the homogenization of a class of hyperbolic equations with imperfect interfaces. SIAM J. Math. Anal. 40 (2009) 1952-1978. | Zbl
, and ,[19] Memory Effects Arising in the Homogenization of Composites with Inclusions, Topics on Mathematics for Smart Systems. World Sci. Publ., Hackensack, USA (2007) 107-121. | Zbl
and ,[20] Homogenization for heat transfer in polycrystals with interfacial resistances. Appl. Anal. 75 (2000) 403-424. | Zbl
,[21] Homogenization of a parabolic problem with an imperfect interface. Rev. Roumaine Math. Pures Appl. 54 (2009) 189-222. | Zbl
,[22] Problèmes aux limites non homogènes et applications, Volume 1. Dunod, Paris, France (1968). | Zbl
and ,[23] Heat conduction in fine scale mixtures with interfacial contact resistance . SIAM J. Appl. Math. 58 (1998) 55-72. | Zbl
,[24] Composite with imperfect interface. Proc. Soc. Lond. A 452 (1996) 329-358. | Zbl
and ,[25] Linear homogenization problem with time dependent coefficient. Trans. Amer. Math. Soc. 281 (1984) 179-195. | Zbl
,[26] Homogenization of a two-component composite with interfacial thermal barrier. Adv. Math. Sci. Appl. 13 (2003) 43-63. | Zbl
,[27] Erratum for the paper “Homogenization of a two-component composite with interfacial thermal barrier” (in Vol. 13, pp. 43-63, 2003). Adv. Math. Sci. Appl. 14 (2004) 375-377. | Zbl
,[28] Homogenization of nonstationary problems in the theory of elasticity on thin periodic structures from the standpoint of the convergence of hyperbolic semigroups in a variable Hilbert space. Sovrem. Mat. Prilozh. 16, Differ. Uravn. Chast. Proizvod. (2004) 64-97 (Russian). Translation in J. Math. Sci. (N. Y.) 133 (2006) 949-998. | Zbl
,[29] Distributed microstructure models of porous media, in Flow in porous media (Oberwolfach (1992)), J. Douglas and U. Hornung Eds., Internat. Ser. Numer. Math. 114, Birkhäuser, Basel, Switzerland (1993) 155-163. | Zbl
,[30] Cours Peccot. Collège de France, France, unpublished (1977).
,[31] Quelques remarques sur l'homogénéisation, in Functional Analysis and Numerical Analysis, Proc. Japan-France Seminar 1976, Japanese Society for the Promotion of Science (1978) 468-482.
,[32] Memory effects and homogenization. Arch. Rational Mech. Anal. 3 (1990) 121-133. | Zbl
,Cité par Sources :