In this paper we consider an approximate controllability problem for linear parabolic equations with rapidly oscillating coefficients in a periodically perforated domain. The holes are -periodic and of size . We show that, as , the approximate control and the corresponding solution converge respectively to the approximate control and to the solution of the homogenized problem. In the limit problem, the approximation of the final state is alterated by a constant which depends on the proportion of material in the perforated domain and is equal to 1 when there are no holes. We also prove that the solution of the approximate controllability problem in the perforated domain behaves, as , as that of the problem posed in the perforated domain having as rigth-hand side the (fixed) control of the limit problem.
Mots-clés : linear parabolic equation, approximate controlability, homogenization
@article{COCV_2001__6__21_0, author = {Donato, Patrizia and Nabil, A{\"\i}ssam}, title = {Approximate controllability of linear parabolic equations in perforated domains}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {21--38}, publisher = {EDP-Sciences}, volume = {6}, year = {2001}, mrnumber = {1804496}, zbl = {0964.35015}, language = {en}, url = {http://www.numdam.org/item/COCV_2001__6__21_0/} }
TY - JOUR AU - Donato, Patrizia AU - Nabil, Aïssam TI - Approximate controllability of linear parabolic equations in perforated domains JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2001 SP - 21 EP - 38 VL - 6 PB - EDP-Sciences UR - http://www.numdam.org/item/COCV_2001__6__21_0/ LA - en ID - COCV_2001__6__21_0 ER -
%0 Journal Article %A Donato, Patrizia %A Nabil, Aïssam %T Approximate controllability of linear parabolic equations in perforated domains %J ESAIM: Control, Optimisation and Calculus of Variations %D 2001 %P 21-38 %V 6 %I EDP-Sciences %U http://www.numdam.org/item/COCV_2001__6__21_0/ %G en %F COCV_2001__6__21_0
Donato, Patrizia; Nabil, Aïssam. Approximate controllability of linear parabolic equations in perforated domains. ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 21-38. http://www.numdam.org/item/COCV_2001__6__21_0/
[1] Homogénéisation dans des ouverts à frontière fortement oscillante. Thèse à l'Université de Nice (1978).
and ,[2] Exact internal controllability in perforated domains. J. Math. Pures Appl. 319 (1989) 185-213. | Zbl
and ,[3] An introduction to Homogenization. Oxford University Press (1999). | MR | Zbl
and ,[4] Homogenization in open sets with holes. J. Math. Anal. Appl. 319 (1979) 509-607. | Zbl
and ,[5] Analyse Mathématique et Calcul Numérique pour les Sciences et Techniques. Masson, Tome 3, Paris (1985). | Zbl
and ,[6] Sulla convergenza di alcune successioni di integrali del tipo dell'area. Rend. Mat. 4 (1975) 277-294. | Zbl
,[7] Su un tipo di convergenza variazionale. Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (8) 58 (1975) 842-850. | Zbl
and ,[8] Homogénéisation et contrôlabilité approchée de l'équation de la chaleur dans des domaines perforés. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 789-794. | Zbl
and ,[9] Homogenization and correctors for heat equation in perforated domains. Ricerche di Matematica (to appear). | MR | Zbl
and ,[10] Contrôlabilité approchée de l'équation de la chaleur semilinéaire. C. R. Acad. Sci. Paris Sér. I Math. 314 (1992) 807-812. | Zbl
, and ,[11] Approximate controllability for the semilinear heat equation. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 31-61. | Zbl
, and ,[12] Remarques sur la contrôlabilité approchée, in Jornadas Hispano-Francesas sobre Control de Sistemas Distribuidos, octubre 1990. Grupo de Análisis Matemático Aplicado de la University of Málaga, Spain (1991) 77-87. | Zbl
,[13] Unique continuation for some evolution equations. J. Differential Equations 66 (1987) 118-139. | Zbl
and ,[14] Approximate controllability for linear parabolic equations with rapidly oscillating coefficients. Control Cybernet. 23 (1994) 1-8. | Zbl
,