The soliton resolution for the focusing modified Korteweg-de Vries (mKdV) equation is established for initial conditions in some weighted Sobolev spaces. Our approach is based on the nonlinear steepest descent method and its reformulation through
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2021.02.008
@article{AIHPC_2021__38_6_2005_0, author = {Chen, Gong and Liu, Jiaqi}, title = {Soliton resolution for the focusing modified {KdV} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {2005--2071}, publisher = {Elsevier}, volume = {38}, number = {6}, year = {2021}, doi = {10.1016/j.anihpc.2021.02.008}, mrnumber = {4327906}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2021.02.008/} }
TY - JOUR AU - Chen, Gong AU - Liu, Jiaqi TI - Soliton resolution for the focusing modified KdV equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 2005 EP - 2071 VL - 38 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2021.02.008/ DO - 10.1016/j.anihpc.2021.02.008 LA - en ID - AIHPC_2021__38_6_2005_0 ER -
%0 Journal Article %A Chen, Gong %A Liu, Jiaqi %T Soliton resolution for the focusing modified KdV equation %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 2005-2071 %V 38 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2021.02.008/ %R 10.1016/j.anihpc.2021.02.008 %G en %F AIHPC_2021__38_6_2005_0
Chen, Gong; Liu, Jiaqi. Soliton resolution for the focusing modified KdV equation. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 2005-2071. doi : 10.1016/j.anihpc.2021.02.008. https://www.numdam.org/articles/10.1016/j.anihpc.2021.02.008/
[1] Complex Variables: Introduction and Applications, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2003 | MR | Zbl
[2] The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., Volume 53 (1974) no. 4, pp. 249-315 | DOI | MR | Zbl
[3] Nonlinear stability of mKdV breathers, Commun. Math. Phys., Volume 324 (2013) no. 1, pp. 233-262 | DOI | MR | Zbl
[4] Dynamics of complex-valued modified KdV solitons with applications to the stability of breathers, Anal. PDE, Volume 8 (2015) no. 3, pp. 629-674 | DOI | MR
[5] Scattering and inverse scattering for first order systems, Commun. Pure Appl. Math., Volume 37 (1984) no. 1, pp. 39-90 | DOI | MR | Zbl
[6] The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. R. Soc. Lond. Ser. A, Volume 278 (1975) no. 1287, pp. 555-601 | DOI | MR | Zbl
[7] Stability and instability of solitary waves of Korteweg-de Vries type, Proc. R. Soc. Lond. Ser. A, Volume 411 (1987) no. 1841, pp. 395-412 | DOI | MR | Zbl
[8] Direct and Inverse Scattering on the Line, Mathematical Surveys and Monographs, vol. 28, American Mathematical Society, Providence, RI, 1988 | MR | Zbl
[9] Long-time asymptotic behavior of the focusing nonlinear Schrödinger equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 4, pp. 887-920 | DOI | Numdam | MR
[10] Long-time asymptotics to the modified KdV equation in weighted Sobolev spaces, 2019 (preprint) | arXiv | MR
[11] Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Am. J. Math., Volume 125 (2003), pp. 1235-1293 | DOI | MR | Zbl
[12] Sharp global well-posedness for KdV and modified KdV on
[13] The asymptotic stability of solitons in the cubic NLS equation on the line, Appl. Anal., Volume 93 (2014) no. 4, pp. 791-822 | DOI | MR | Zbl
[14] Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes in Mathematics, vol. 3, New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence, RI, 1999 (viii+273 pp.) | MR | Zbl
[15] A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math. (2), Volume 137 (1993), pp. 295-368 | DOI | MR | Zbl
[16] Asymptotics for the Painlevé II equation, Commun. Pure Appl. Math., Volume 48 (1995) no. 3, pp. 277-337 | DOI | MR | Zbl
[17] Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space. Dedicated to the memory of Jürgen K. Moser, Commun. Pure Appl. Math., Volume 56 (2003), pp. 1029-1077 | DOI | MR | Zbl
[18] Long-time asymptotics for the NLS equation via dbar methods, 2008 (preprint) | arXiv
[19] Dispersive asymptotics for linear and integrable equations by the
[20] Classification of radial solutions of the focusing, energy-critical wave equation, Camb. J. Math., Volume 1 (2013) no. 1, pp. 75-144 | DOI | MR | Zbl
[21] Soliton resolution along a sequence of times for the focusing energy critical wave equation, Geom. Funct. Anal., Volume 27 (2017) no. 4, pp. 798-862 | DOI | MR
[22] Asymptotic stability of solitons for mKdV, Adv. Math., Volume 299 (2016), pp. 272-330 | DOI | MR
[23] Global well-posedness of Korteweg-de Vries equation in
[24] Long time behavior of solutions to the mKdV, Commun. Partial Differ. Equ., Volume 41 (2016) no. 2, pp. 282-317 | DOI | MR
[25] Large time behavior of solutions for the modified Korteweg de Vries equation, Int. Math. Res. Not. (1999), pp. 395-418 | DOI | MR | Zbl
[26] On the modified Korteweg-de Vries equation, Math. Phys. Anal. Geom., Volume 4 (2001) no. 3, pp. 197-227 | DOI | MR | Zbl
[27] Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons, J. Phys. Soc. Jpn., Volume 33 (1972) no. 5, pp. 1456-1458 | DOI
[28] Soliton resolution for the derivative nonlinear Schrödinger equation, Commun. Math. Phys., Volume 363 (2018) no. 3, pp. 1003-1049 | DOI | MR
[29] Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Commun. Pure Appl. Math., Volume 46 (1993) no. 4, pp. 527-620 | DOI | MR | Zbl
[30] On the ill-posedness of some canonical dispersive equations, Duke Math. J., Volume 106 (2001), pp. 617-633 | DOI | MR | Zbl
[31] Low regularity conservation laws for integrable PDE, Geom. Funct. Anal., Volume 28 (2018) no. 4, pp. 1062-1090 | DOI | MR
[32] Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity, Differ. Integral Equ., Volume 22 (2009) no. 5–6, pp. 447-464 | MR | Zbl
[33] Conserved energies for the cubic nonlinear Schrödinger equation in one dimension, Duke Math. J., Volume 167 (2018) no. 17, pp. 3207-3313 | DOI | MR
[34] Elements of Soliton Theory, Pure Appl. Math., Wiley, New York, 1980 | MR | Zbl
[35] Introduction to Nonlinear Dispersive Equations, Universitext, Springer, New York, 2015 (xiv+301 pp.) | MR | Zbl
[36] Long-time behavior of solutions to the derivative nonlinear Schrödinger equation for soliton-free initial data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 1, pp. 217-265 | DOI | Numdam | MR
[37] Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity, Volume 18 (2005) no. 1, pp. 55-80 | DOI | MR | Zbl
[38] Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal., Volume 157 (2001) no. 3, pp. 219-254 | DOI | MR | Zbl
[39] Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Commun. Math. Phys., Volume 231 (2002) no. 2, pp. 347-373 | DOI | MR | Zbl
[40] The
[41] Large time asymptotics of solutions around solitary waves to the generalized Korteweg-de Vries equations, SIAM J. Math. Anal., Volume 32 (2001) no. 5, pp. 1050-1080 | DOI | MR | Zbl
[42] Asymptotic stability of solitary waves, Commun. Math. Phys., Volume 164 (1994) no. 2, pp. 305-349 | DOI | MR | Zbl
[43] Inverse Spectral Theory, Pure and Applied Mathematics, vol. 130, Academic Press, Inc., Boston, MA, 1987 (x+192 pp.) | MR | Zbl
[44] Long-time asymptotics for the massive Thirring model (preprint) | arXiv
[45] Sur quelques généralisations de l'équation de Korteweg-de Vries, J. Math. Pures Appl. (9), Volume 58 (1979) no. 1, pp. 21-61 | MR | Zbl
[46] Asymptotic Analysis of Soliton Problems. An Inverse Scattering Approach, Lecture Notes in Mathematics, vol. 1232, Springer-Verlag, Berlin, 1986 (viii+180 pp.) | MR | Zbl
[47] The modified Korteweg-de Vries equation, J. Phys. Soc. Jpn., Volume 34 (1973) no. 5, pp. 1289-1296 | DOI | MR
[48] Multi-pole solutions of the modified Korteweg-de Vries equation, J. Phys. Soc. Jpn., Volume 51 (1982) no. 6, pp. 2029-2035 | DOI | MR
[49] The Riemann-Hilbert problem and inverse scattering, SIAM J. Math. Anal., Volume 20 (1989) no. 4, pp. 966-986 | DOI | MR | Zbl
[50]
Cité par Sources :