On établit le comportement au temps long des solutions de l'équation de Schrödinger nonlinéraire avec dérivée dans des espaces de Sobolev à poids, sous l'hypothèse que les conditions initiales ne supportent pas de solitons. Notre approche utilise l'inverse scattering et la méthode de la plus grande pente (“steepest descent”) nonlinéaire de Deift et Zhou revisitée par Dieng et McLaughlin.
The large-time behavior of solutions to the derivative nonlinear Schrödinger equation is established for initial conditions in some weighted Sobolev spaces under the assumption that the initial conditions do not support solitons. Our approach uses the inverse scattering setting and the nonlinear steepest descent method of Deift and Zhou as recast by Dieng and McLaughlin.
@article{AIHPC_2018__35_1_217_0, author = {Liu, Jiaqi and Perry, Peter A. and Sulem, Catherine}, title = {Long-time behavior of solutions to the derivative nonlinear {Schr\"odinger} equation for soliton-free initial data}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {217--265}, publisher = {Elsevier}, volume = {35}, number = {1}, year = {2018}, doi = {10.1016/j.anihpc.2017.04.002}, mrnumber = {3739932}, zbl = {1382.35271}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2017.04.002/} }
TY - JOUR AU - Liu, Jiaqi AU - Perry, Peter A. AU - Sulem, Catherine TI - Long-time behavior of solutions to the derivative nonlinear Schrödinger equation for soliton-free initial data JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 217 EP - 265 VL - 35 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2017.04.002/ DO - 10.1016/j.anihpc.2017.04.002 LA - en ID - AIHPC_2018__35_1_217_0 ER -
%0 Journal Article %A Liu, Jiaqi %A Perry, Peter A. %A Sulem, Catherine %T Long-time behavior of solutions to the derivative nonlinear Schrödinger equation for soliton-free initial data %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 217-265 %V 35 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2017.04.002/ %R 10.1016/j.anihpc.2017.04.002 %G en %F AIHPC_2018__35_1_217_0
Liu, Jiaqi; Perry, Peter A.; Sulem, Catherine. Long-time behavior of solutions to the derivative nonlinear Schrödinger equation for soliton-free initial data. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 217-265. doi : 10.1016/j.anihpc.2017.04.002. https://www.numdam.org/articles/10.1016/j.anihpc.2017.04.002/
[1] Global existence for the derivative nonlinear Schrodinger equation by the method of inverse scattering (ArXiv e-prints) | arXiv | MR | Zbl
[2] Darboux transformation and soliton-like solutions for the Gerdjikov–Ivanov equation, J. Phys. A, Volume 33 (2000) no. 39, pp. 6925–6933 | DOI | MR | Zbl
[3] An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., Volume 19 (1978) no. 4, pp. 798–801 | MR | Zbl
[4] Analtyic Properties of Zakharov–Shabat Inverse Scattering Problem with a Polynomial Spectral Dependence of Degree 1 in the Potential, Yale University, 1983 http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:8329296 ProQuest LLC, Ann Arbor, MI, thesis (Ph.D.) | MR
[5] Existence of global solutions to the derivative NLS equation with the inverse scattering transform method, Int. Math. Res. Not. (2017) | DOI | MR | Zbl
[6] Large time behavior of solutions for derivative cubic nonlinear Schrödinger equations, Publ. Res. Inst. Math. Sci., Volume 35 (1999) no. 3, pp. 501–513 | DOI | MR | Zbl
[7] Asymptotic behavior of non-linear wave systems integrated by the inverse scattering method, Zh. Èksp. Teor. Fiz., Volume 71 (1976) no. 1, pp. 203–215 | MR
[8] A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation, Ann. Math., Volume 137 (1993) no. 2, pp. 295–368 | DOI | MR | Zbl
[9] Long-time asymptotics for integrable nonlinear wave equations, Important Developments in Soliton Theory, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1993, pp. 181–204 | DOI | MR | Zbl
[10] Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space, Commun. Pure Appl. Math., Volume 56 (2003) no. 8, pp. 1029–1077 (dedicated to the memory of Jürgen K. Moser) | DOI | MR | Zbl
[11] Asymptotics of oscillatory Riemann–Hilbert problems, J. Math. Phys., Volume 37 (1996) no. 11, pp. 5869–5892 | DOI | MR | Zbl
[12] A nonlinear stationary phase method for oscillatory Riemann–Hilbert problems, Int. Math. Res. Not., Volume 2011 (2011) no. 12, pp. 2650–2765 | DOI | MR | Zbl
[13] Long-time asymptotics for the NLS equation via dbar methods (ArXiv e-prints) | arXiv
[14] The
[15] On asymptotic stability of N-solitons of the defocusing nonlinear Schrodinger equation (ArXiv e-prints) | arXiv | DOI | Zbl
[16] Long time asymptotic behavior of the focusing nonlinear Schrodinger equation (ArXiv e-prints) | arXiv | Numdam | MR | Zbl
[17] Leading-order temporal asymptotics of the modified nonlinear Schrödinger equation: solitonless sector, Inverse Probl., Volume 13 (1997) no. 5, pp. 1311–1339 | DOI | MR | Zbl
[18] Long-time asymptotic for the derivative nonlinear Schrödinger equation with decaying initial value | arXiv | DOI
[19] Long-time asymptotics for integrable systems. Higher order theory, Commun. Math. Phys., Volume 165 (1994) no. 1, pp. 175–191 http://projecteuclid.org/euclid.cmp/1104271038 | DOI | MR | Zbl
[20] Asymptotic behavior of the solutions to the nonlinear Schrödinger equation, and isomonodromic deformations of systems of linear differential equations, Dokl. Akad. Nauk SSSR, Volume 261 (1981) no. 1, pp. 14–18 | MR | Zbl
[21] Library of mathematical functions, release 1.0.11 of 2016-06-08 http://dlmf.nist.gov/ (online companion to [24] )
[22] The asymptotic stability of solitons in the cubic NLS equation on the line, Appl. Anal., Volume 93 (2014) no. 4, pp. 791–822 | DOI | MR | Zbl
[23] A Course of Modern Analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 an introduction to the general theory of infinite processes and of analytic functions, with an account of the principal transcendental functions, reprint of the fourth (1927) edition | DOI | JFM | MR
[24] NIST Handbook of Mathematical Functions, Cambridge University Press, New York, NY, 2010 (print companion to [21] ) | MR | Zbl
- Asymptotic stability of N-soliton solutions for the modified nonlinear Schrödinger equation, Journal of Mathematical Physics, Volume 66 (2025) no. 4 | DOI:10.1063/5.0232337
- Long-time asymptotic behavior and bound state soliton solutions for a generalized derivative nonlinear Schrödinger equation, Theoretical and Mathematical Physics, Volume 222 (2025) no. 1, p. 85 | DOI:10.1134/s0040577925010076
- Асимптотическое поведение при больших временах и решения для связанных солитонных состояний обобщенных нелинейных уравнений Шредингера c производной, Теоретическая и математическая физика, Volume 222 (2025) no. 1, p. 99 | DOI:10.4213/tmf10770
- On the Maxwell‐Bloch system in the sharp‐line limit without solitons, Communications on Pure and Applied Mathematics, Volume 77 (2024) no. 1, p. 457 | DOI:10.1002/cpa.22136
- Soliton resolution for the complex short-pulse positive flow with weighted Sobolev initial data in the space-time soliton regions, Journal of Differential Equations, Volume 386 (2024), p. 214 | DOI:10.1016/j.jde.2023.12.036
- On asymptotic stability of multi-solitons for the focusing modified Korteweg–de Vries equation, Physica D: Nonlinear Phenomena, Volume 459 (2024), p. 134046 | DOI:10.1016/j.physd.2023.134046
- Long‐time asymptotics of solution for the fifth‐order modified KdV equation in the presence of discrete spectrum, Studies in Applied Mathematics (2024) | DOI:10.1111/sapm.12742
- Discontinuous initial value and Whitham modulation for the generalized Gerdjikov-Ivanov equation, Wave Motion, Volume 127 (2024), p. 103276 | DOI:10.1016/j.wavemoti.2024.103276
- On the well-posedness problem for the derivative nonlinear Schrödinger equation, Analysis PDE, Volume 16 (2023) no. 5, p. 1245 | DOI:10.2140/apde.2023.16.1245
- The Defocusing Nonlinear Schrödinger Equation with a Nonzero Background: Painlevé Asymptotics in Two Transition Regions, Communications in Mathematical Physics, Volume 402 (2023) no. 3, p. 2879 | DOI:10.1007/s00220-023-04787-6
- On the Cauchy problem of defocusing mKdV equation with finite density initial data: Long time asymptotics in soliton-less regions, Journal of Differential Equations, Volume 372 (2023), p. 55 | DOI:10.1016/j.jde.2023.06.038
- The long-time asymptotics of the derivative nonlinear Schrödinger equation with step-like initial value, Physica D: Nonlinear Phenomena, Volume 454 (2023), p. 133855 | DOI:10.1016/j.physd.2023.133855
- On the long-time asymptotic for a coupled generalized nonlinear Schrödinger equations with weighted Sobolev initial data, Physica D: Nonlinear Phenomena, Volume 456 (2023), p. 133915 | DOI:10.1016/j.physd.2023.133915
- On the soliton resolution and the asymptotic stability of N-soliton solution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions, Advances in Mathematics, Volume 409 (2022), p. 108639 | DOI:10.1016/j.aim.2022.108639
- The complex Hamiltonian system in the Gerdjikov-Ivanov equation and its applications, Analysis and Mathematical Physics, Volume 12 (2022) no. 4 | DOI:10.1007/s13324-022-00704-7
- Soliton Resolution for the Wadati–Konno–Ichikawa Equation with Weighted Sobolev Initial Data, Annales Henri Poincaré, Volume 23 (2022) no. 7, p. 2611 | DOI:10.1007/s00023-021-01143-z
- Triple-pole soliton solutions of the derivative nonlinear Schrödinger equation via inverse scattering transform, Applied Mathematics Letters, Volume 125 (2022), p. 107741 | DOI:10.1016/j.aml.2021.107741
- Long-time asymptotics of the modified KdV equation in weighted Sobolev spaces, Forum of Mathematics, Sigma, Volume 10 (2022) | DOI:10.1017/fms.2022.63
- Soliton resolution for the complex short pulse equation with weighted Sobolev initial data in space-time solitonic regions, Journal of Differential Equations, Volume 329 (2022), p. 31 | DOI:10.1016/j.jde.2022.05.003
- Long time and Painlevé-type asymptotics for the Sasa-Satsuma equation in solitonic space time regions, Journal of Differential Equations, Volume 329 (2022), p. 89 | DOI:10.1016/j.jde.2022.05.006
- Defocusing NLS equation with nonzero background: Large-time asymptotics in a solitonless region, Journal of Differential Equations, Volume 336 (2022), p. 334 | DOI:10.1016/j.jde.2022.07.024
- Long-time asymptotic behavior of the coupled dispersive AB system in low regularity spaces, Journal of Mathematical Physics, Volume 63 (2022) no. 11 | DOI:10.1063/5.0102264
- The asymptotic stability of solitons for the focusing mKdV equation with weak weighted Sobolev initial data, Journal of Mathematical Physics, Volume 63 (2022) no. 11 | DOI:10.1063/5.0085253
- Riemann–Hilbert approach and long-time asymptotics of the positive flow short-pulse equation, Physica D: Nonlinear Phenomena, Volume 439 (2022), p. 133383 | DOI:10.1016/j.physd.2022.133383
- Soliton resolution for the focusing modified KdV equation, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 38 (2021) no. 6, p. 2005 | DOI:10.1016/j.anihpc.2021.02.008
- Long-time asymptotic behavior of a mixed Schrödinger equation with weighted Sobolev initial data, Journal of Mathematical Physics, Volume 62 (2021) no. 9 | DOI:10.1063/5.0045970
- The Riemann–Hilbert problem to coupled nonlinear Schrödinger equation: Long-time dynamics on the half-line, Journal of Nonlinear Mathematical Physics, Volume 26 (2021) no. 3, p. 483 | DOI:10.1080/14029251.2019.1613055
- On the Stability of Periodic Waves for the Cubic Derivative NLS and the Quintic NLS, Journal of Nonlinear Science, Volume 31 (2021) no. 3 | DOI:10.1007/s00332-021-09712-6
- Long-time asymptotics for the initial-boundary value problem of coupled Hirota equation on the half-line, Science China Mathematics, Volume 64 (2021) no. 1, p. 81 | DOI:10.1007/s11425-018-9567-1
- Long‐time asymptotic behavior of the fifth‐order modified KdV equation in low regularity spaces, Studies in Applied Mathematics, Volume 147 (2021) no. 1, p. 230 | DOI:10.1111/sapm.12379
- Self-similar solutions to the derivative nonlinear Schrödinger equation, Journal of Differential Equations, Volume 268 (2020) no. 12, p. 7940 | DOI:10.1016/j.jde.2019.11.089
- Optimal small data scattering for the generalized derivative nonlinear Schrödinger equations, Journal of Differential Equations, Volume 269 (2020) no. 9, p. 6422 | DOI:10.1016/j.jde.2020.05.001
- Long-time asymptotics for a mixed nonlinear Schrödinger equation with the Schwartz initial data, Journal of Mathematical Analysis and Applications, Volume 489 (2020) no. 2, p. 124188 | DOI:10.1016/j.jmaa.2020.124188
- A generalization of the Landau-Lifschitz equation: breathers and rogue waves, Journal of Nonlinear Mathematical Physics, Volume 27 (2020) no. 2, p. 279 | DOI:10.1080/14029251.2020.1700636
- Instability of solitary wave solutions for the nonlinear Schrödinger equation of derivative type in degenerate case, Nonlinear Analysis, Volume 192 (2020), p. 111665 | DOI:10.1016/j.na.2019.111665
- Finite gap integration of the derivative nonlinear Schrödinger equation: A Riemann–Hilbert method, Physica D: Nonlinear Phenomena, Volume 402 (2020), p. 132213 | DOI:10.1016/j.physd.2019.132213
- Long-time asymptotics for the Sasa–Satsuma equation via nonlinear steepest descent method, Journal of Mathematical Physics, Volume 60 (2019) no. 1 | DOI:10.1063/1.5061793
- The Gerdjikov‐Ivanov–type derivative nonlinear Schrödinger equation: Long‐time dynamics of nonzero boundary conditions, Mathematical Methods in the Applied Sciences, Volume 42 (2019) no. 14, p. 4839 | DOI:10.1002/mma.5698
- Dispersive Asymptotics for Linear and Integrable Equations by the ∂ ¯
Steepest Descent Method, Nonlinear Dispersive Partial Differential Equations and Inverse Scattering, Volume 83 (2019), p. 253 | DOI:10.1007/978-1-4939-9806-7_5 - Inverse Scattering for the Massive Thirring Model, Nonlinear Dispersive Partial Differential Equations and Inverse Scattering, Volume 83 (2019), p. 497 | DOI:10.1007/978-1-4939-9806-7_11
- Long time asymptotic behavior of the focusing nonlinear Schrödinger equation, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 35 (2018) no. 4, p. 887 | DOI:10.1016/j.anihpc.2017.08.006
- The derivative nonlinear Schrödinger equation on the half line, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 35 (2018) no. 7, p. 1947 | DOI:10.1016/j.anihpc.2018.03.006
- Soliton Resolution for the Derivative Nonlinear Schrödinger Equation, Communications in Mathematical Physics, Volume 363 (2018) no. 3, p. 1003 | DOI:10.1007/s00220-018-3138-4
- Global well-posedness for the derivative non-linear Schrödinger equation, Communications in Partial Differential Equations, Volume 43 (2018) no. 8, p. 1151 | DOI:10.1080/03605302.2018.1475489
- Soliton interactions and degenerate soliton complexes for the focusing nonlinear Schrödinger equation with nonzero background, The European Physical Journal Plus, Volume 133 (2018) no. 10 | DOI:10.1140/epjp/i2018-12263-y
Cité par 45 documents. Sources : Crossref