Long-time behavior of solutions to the derivative nonlinear Schrödinger equation for soliton-free initial data
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 217-265.

On établit le comportement au temps long des solutions de l'équation de Schrödinger nonlinéraire avec dérivée dans des espaces de Sobolev à poids, sous l'hypothèse que les conditions initiales ne supportent pas de solitons. Notre approche utilise l'inverse scattering et la méthode de la plus grande pente (“steepest descent”) nonlinéaire de Deift et Zhou revisitée par Dieng et McLaughlin.

The large-time behavior of solutions to the derivative nonlinear Schrödinger equation is established for initial conditions in some weighted Sobolev spaces under the assumption that the initial conditions do not support solitons. Our approach uses the inverse scattering setting and the nonlinear steepest descent method of Deift and Zhou as recast by Dieng and McLaughlin.

DOI : 10.1016/j.anihpc.2017.04.002
Mots-clés : Riemann–Hilbert problem, Inverse scattering method, Nonlinear steepest descent method
@article{AIHPC_2018__35_1_217_0,
     author = {Liu, Jiaqi and Perry, Peter A. and Sulem, Catherine},
     title = {Long-time behavior of solutions to the derivative nonlinear {Schr\"odinger} equation for soliton-free initial data},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {217--265},
     publisher = {Elsevier},
     volume = {35},
     number = {1},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.04.002},
     mrnumber = {3739932},
     zbl = {1382.35271},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2017.04.002/}
}
TY  - JOUR
AU  - Liu, Jiaqi
AU  - Perry, Peter A.
AU  - Sulem, Catherine
TI  - Long-time behavior of solutions to the derivative nonlinear Schrödinger equation for soliton-free initial data
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 217
EP  - 265
VL  - 35
IS  - 1
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2017.04.002/
DO  - 10.1016/j.anihpc.2017.04.002
LA  - en
ID  - AIHPC_2018__35_1_217_0
ER  - 
%0 Journal Article
%A Liu, Jiaqi
%A Perry, Peter A.
%A Sulem, Catherine
%T Long-time behavior of solutions to the derivative nonlinear Schrödinger equation for soliton-free initial data
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 217-265
%V 35
%N 1
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2017.04.002/
%R 10.1016/j.anihpc.2017.04.002
%G en
%F AIHPC_2018__35_1_217_0
Liu, Jiaqi; Perry, Peter A.; Sulem, Catherine. Long-time behavior of solutions to the derivative nonlinear Schrödinger equation for soliton-free initial data. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 217-265. doi : 10.1016/j.anihpc.2017.04.002. https://www.numdam.org/articles/10.1016/j.anihpc.2017.04.002/

[1] Liu, J.; Perry, P.; Sulem, C. Global existence for the derivative nonlinear Schrodinger equation by the method of inverse scattering (ArXiv e-prints) | arXiv | MR | Zbl

[2] Fan, E. Darboux transformation and soliton-like solutions for the Gerdjikov–Ivanov equation, J. Phys. A, Volume 33 (2000) no. 39, pp. 6925–6933 | DOI | MR | Zbl

[3] Kaup, D.J.; Newell, A.C. An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., Volume 19 (1978) no. 4, pp. 798–801 | MR | Zbl

[4] Lee, J.-H. Analtyic Properties of Zakharov–Shabat Inverse Scattering Problem with a Polynomial Spectral Dependence of Degree 1 in the Potential, Yale University, 1983 http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:8329296 ProQuest LLC, Ann Arbor, MI, thesis (Ph.D.) | MR

[5] Pelinovsky, D.E.; Shimabukuro, Y. Existence of global solutions to the derivative NLS equation with the inverse scattering transform method, Int. Math. Res. Not. (2017) | DOI | MR | Zbl

[6] Hayashi, N.; Naumkin, P.I.; Uchida, H. Large time behavior of solutions for derivative cubic nonlinear Schrödinger equations, Publ. Res. Inst. Math. Sci., Volume 35 (1999) no. 3, pp. 501–513 | DOI | MR | Zbl

[7] Zakharov, V.E.; Manakov, S.V. Asymptotic behavior of non-linear wave systems integrated by the inverse scattering method, Zh. Èksp. Teor. Fiz., Volume 71 (1976) no. 1, pp. 203–215 | MR

[8] Deift, P.; Zhou, X. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation, Ann. Math., Volume 137 (1993) no. 2, pp. 295–368 | DOI | MR | Zbl

[9] Deift, P.A.; Its, A.R.; Zhou, X. Long-time asymptotics for integrable nonlinear wave equations, Important Developments in Soliton Theory, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1993, pp. 181–204 | DOI | MR | Zbl

[10] Deift, P.; Zhou, X. Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space, Commun. Pure Appl. Math., Volume 56 (2003) no. 8, pp. 1029–1077 (dedicated to the memory of Jürgen K. Moser) | DOI | MR | Zbl

[11] Varzugin, G.G. Asymptotics of oscillatory Riemann–Hilbert problems, J. Math. Phys., Volume 37 (1996) no. 11, pp. 5869–5892 | DOI | MR | Zbl

[12] Do, Y. A nonlinear stationary phase method for oscillatory Riemann–Hilbert problems, Int. Math. Res. Not., Volume 2011 (2011) no. 12, pp. 2650–2765 | DOI | MR | Zbl

[13] Dieng, M.; McLaughlin, K.D.T. Long-time asymptotics for the NLS equation via dbar methods (ArXiv e-prints) | arXiv

[14] McLaughlin, K.T.-R.; Miller, P.D. The steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights, Int. Math. Res. Pap. (2006), pp. 1–77 | MR | Zbl

[15] Cuccagna, S.; Jenkins, R. On asymptotic stability of N-solitons of the defocusing nonlinear Schrodinger equation (ArXiv e-prints) | arXiv | DOI | Zbl

[16] Borghese, M.; Jenkins, R.; McLaughlin, K.D.T.-R. Long time asymptotic behavior of the focusing nonlinear Schrodinger equation (ArXiv e-prints) | arXiv | Numdam | MR | Zbl

[17] Kitaev, A.V.; Vartanian, A.H. Leading-order temporal asymptotics of the modified nonlinear Schrödinger equation: solitonless sector, Inverse Probl., Volume 13 (1997) no. 5, pp. 1311–1339 | DOI | MR | Zbl

[18] Xu, J.; Fan, E. Long-time asymptotic for the derivative nonlinear Schrödinger equation with decaying initial value | arXiv | DOI

[19] Deift, P.A.; Zhou, X. Long-time asymptotics for integrable systems. Higher order theory, Commun. Math. Phys., Volume 165 (1994) no. 1, pp. 175–191 http://projecteuclid.org/euclid.cmp/1104271038 | DOI | MR | Zbl

[20] Its, A.R. Asymptotic behavior of the solutions to the nonlinear Schrödinger equation, and isomonodromic deformations of systems of linear differential equations, Dokl. Akad. Nauk SSSR, Volume 261 (1981) no. 1, pp. 14–18 | MR | Zbl

[21] Digital, N.I.S.T. Library of mathematical functions, release 1.0.11 of 2016-06-08 http://dlmf.nist.gov/ (online companion to [24] )

[22] Cuccagna, S.; Pelinovsky, D.E. The asymptotic stability of solitons in the cubic NLS equation on the line, Appl. Anal., Volume 93 (2014) no. 4, pp. 791–822 | DOI | MR | Zbl

[23] Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 an introduction to the general theory of infinite processes and of analytic functions, with an account of the principal transcendental functions, reprint of the fourth (1927) edition | DOI | JFM | MR

[24] Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions, Cambridge University Press, New York, NY, 2010 (print companion to [21] ) | MR | Zbl

  • Yang, Jin-Jie; Tian, Shou-Fu; Li, Zhi-Qiang Asymptotic stability of N-soliton solutions for the modified nonlinear Schrödinger equation, Journal of Mathematical Physics, Volume 66 (2025) no. 4 | DOI:10.1063/5.0232337
  • Wang, Bingshui; Zhao, Qiulan; Li, Xinyue Long-time asymptotic behavior and bound state soliton solutions for a generalized derivative nonlinear Schrödinger equation, Theoretical and Mathematical Physics, Volume 222 (2025) no. 1, p. 85 | DOI:10.1134/s0040577925010076
  • Wang, Bingshui; Zhao, Qiulan; Li, Xinyue Асимптотическое поведение при больших временах и решения для связанных солитонных состояний обобщенных нелинейных уравнений Шредингера c производной, Теоретическая и математическая физика, Volume 222 (2025) no. 1, p. 99 | DOI:10.4213/tmf10770
  • Li, Sitai; Miller, Peter D. On the Maxwell‐Bloch system in the sharp‐line limit without solitons, Communications on Pure and Applied Mathematics, Volume 77 (2024) no. 1, p. 457 | DOI:10.1002/cpa.22136
  • Geng, Xianguo; Wang, Jia; Wang, Kedong; Li, Ruomeng Soliton resolution for the complex short-pulse positive flow with weighted Sobolev initial data in the space-time soliton regions, Journal of Differential Equations, Volume 386 (2024), p. 214 | DOI:10.1016/j.jde.2023.12.036
  • Liu, Anran; Fan, Engui On asymptotic stability of multi-solitons for the focusing modified Korteweg–de Vries equation, Physica D: Nonlinear Phenomena, Volume 459 (2024), p. 134046 | DOI:10.1016/j.physd.2023.134046
  • Liu, Nan; Chen, Mingjuan; Guo, Boling Long‐time asymptotics of solution for the fifth‐order modified KdV equation in the presence of discrete spectrum, Studies in Applied Mathematics (2024) | DOI:10.1111/sapm.12742
  • Liu, Yaqing; Zeng, Shijie Discontinuous initial value and Whitham modulation for the generalized Gerdjikov-Ivanov equation, Wave Motion, Volume 127 (2024), p. 103276 | DOI:10.1016/j.wavemoti.2024.103276
  • Killip, Rowan; Ntekoume, Maria; Vişan, Monica On the well-posedness problem for the derivative nonlinear Schrödinger equation, Analysis PDE, Volume 16 (2023) no. 5, p. 1245 | DOI:10.2140/apde.2023.16.1245
  • Wang, Zhaoyu; Fan, Engui The Defocusing Nonlinear Schrödinger Equation with a Nonzero Background: Painlevé Asymptotics in Two Transition Regions, Communications in Mathematical Physics, Volume 402 (2023) no. 3, p. 2879 | DOI:10.1007/s00220-023-04787-6
  • Xu, Taiyang; Zhang, Zechuan; Fan, Engui On the Cauchy problem of defocusing mKdV equation with finite density initial data: Long time asymptotics in soliton-less regions, Journal of Differential Equations, Volume 372 (2023), p. 55 | DOI:10.1016/j.jde.2023.06.038
  • Wen, Lili; Chen, Yong; Xu, Jian The long-time asymptotics of the derivative nonlinear Schrödinger equation with step-like initial value, Physica D: Nonlinear Phenomena, Volume 454 (2023), p. 133855 | DOI:10.1016/j.physd.2023.133855
  • Li, Zhi-Qiang; Tian, Shou-Fu; Yang, Jin-Jie On the long-time asymptotic for a coupled generalized nonlinear Schrödinger equations with weighted Sobolev initial data, Physica D: Nonlinear Phenomena, Volume 456 (2023), p. 133915 | DOI:10.1016/j.physd.2023.133915
  • Li, Zhi-Qiang; Tian, Shou-Fu; Yang, Jin-Jie On the soliton resolution and the asymptotic stability of N-soliton solution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions, Advances in Mathematics, Volume 409 (2022), p. 108639 | DOI:10.1016/j.aim.2022.108639
  • Chen, Jinbing; Zhen, Yanpei The complex Hamiltonian system in the Gerdjikov-Ivanov equation and its applications, Analysis and Mathematical Physics, Volume 12 (2022) no. 4 | DOI:10.1007/s13324-022-00704-7
  • Li, Zhi-Qiang; Tian, Shou-Fu; Yang, Jin-Jie Soliton Resolution for the Wadati–Konno–Ichikawa Equation with Weighted Sobolev Initial Data, Annales Henri Poincaré, Volume 23 (2022) no. 7, p. 2611 | DOI:10.1007/s00023-021-01143-z
  • Liu, Nan; Xuan, Zuxing; Sun, Jinyi Triple-pole soliton solutions of the derivative nonlinear Schrödinger equation via inverse scattering transform, Applied Mathematics Letters, Volume 125 (2022), p. 107741 | DOI:10.1016/j.aml.2021.107741
  • Chen, Gong; Liu, Jiaqi Long-time asymptotics of the modified KdV equation in weighted Sobolev spaces, Forum of Mathematics, Sigma, Volume 10 (2022) | DOI:10.1017/fms.2022.63
  • Li, Zhi-Qiang; Tian, Shou-Fu; Yang, Jin-Jie; Fan, Engui Soliton resolution for the complex short pulse equation with weighted Sobolev initial data in space-time solitonic regions, Journal of Differential Equations, Volume 329 (2022), p. 31 | DOI:10.1016/j.jde.2022.05.003
  • Xun, Weikang; Fan, Engui Long time and Painlevé-type asymptotics for the Sasa-Satsuma equation in solitonic space time regions, Journal of Differential Equations, Volume 329 (2022), p. 89 | DOI:10.1016/j.jde.2022.05.006
  • Wang, Zhaoyu; Fan, Engui Defocusing NLS equation with nonzero background: Large-time asymptotics in a solitonless region, Journal of Differential Equations, Volume 336 (2022), p. 334 | DOI:10.1016/j.jde.2022.07.024
  • Zhu, Jin-Yan; Chen, Yong Long-time asymptotic behavior of the coupled dispersive AB system in low regularity spaces, Journal of Mathematical Physics, Volume 63 (2022) no. 11 | DOI:10.1063/5.0102264
  • Liu, Anran; Fan, Engui The asymptotic stability of solitons for the focusing mKdV equation with weak weighted Sobolev initial data, Journal of Mathematical Physics, Volume 63 (2022) no. 11 | DOI:10.1063/5.0085253
  • Wang, Kedong; Geng, Xianguo; Chen, Mingming Riemann–Hilbert approach and long-time asymptotics of the positive flow short-pulse equation, Physica D: Nonlinear Phenomena, Volume 439 (2022), p. 133383 | DOI:10.1016/j.physd.2022.133383
  • Chen, Gong; Liu, Jiaqi Soliton resolution for the focusing modified KdV equation, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 38 (2021) no. 6, p. 2005 | DOI:10.1016/j.anihpc.2021.02.008
  • Cheng, Qiaoyuan; Yang, Yiling; Fan, Engui Long-time asymptotic behavior of a mixed Schrödinger equation with weighted Sobolev initial data, Journal of Mathematical Physics, Volume 62 (2021) no. 9 | DOI:10.1063/5.0045970
  • Guo, Boling; Liu, Nan The Riemann–Hilbert problem to coupled nonlinear Schrödinger equation: Long-time dynamics on the half-line, Journal of Nonlinear Mathematical Physics, Volume 26 (2021) no. 3, p. 483 | DOI:10.1080/14029251.2019.1613055
  • Hakkaev, Sevdzhan; Stanislavova, Milena; Stefanov, Atanas On the Stability of Periodic Waves for the Cubic Derivative NLS and the Quintic NLS, Journal of Nonlinear Science, Volume 31 (2021) no. 3 | DOI:10.1007/s00332-021-09712-6
  • Liu, Nan; Guo, Boling Long-time asymptotics for the initial-boundary value problem of coupled Hirota equation on the half-line, Science China Mathematics, Volume 64 (2021) no. 1, p. 81 | DOI:10.1007/s11425-018-9567-1
  • Liu, Nan; Chen, Mingjuan; Guo, Boling Long‐time asymptotic behavior of the fifth‐order modified KdV equation in low regularity spaces, Studies in Applied Mathematics, Volume 147 (2021) no. 1, p. 230 | DOI:10.1111/sapm.12379
  • Fujiwara, Kazumasa; Georgiev, Vladimir; Ozawa, Tohru Self-similar solutions to the derivative nonlinear Schrödinger equation, Journal of Differential Equations, Volume 268 (2020) no. 12, p. 7940 | DOI:10.1016/j.jde.2019.11.089
  • Bai, Ruobing; Wu, Yifei; Xue, Jun Optimal small data scattering for the generalized derivative nonlinear Schrödinger equations, Journal of Differential Equations, Volume 269 (2020) no. 9, p. 6422 | DOI:10.1016/j.jde.2020.05.001
  • Cheng, Qiaoyuan; Fan, Engui Long-time asymptotics for a mixed nonlinear Schrödinger equation with the Schwartz initial data, Journal of Mathematical Analysis and Applications, Volume 489 (2020) no. 2, p. 124188 | DOI:10.1016/j.jmaa.2020.124188
  • Li, Ruomeng; Geng, Xianguo; Xue, Bo A generalization of the Landau-Lifschitz equation: breathers and rogue waves, Journal of Nonlinear Mathematical Physics, Volume 27 (2020) no. 2, p. 279 | DOI:10.1080/14029251.2020.1700636
  • Ning, Cui Instability of solitary wave solutions for the nonlinear Schrödinger equation of derivative type in degenerate case, Nonlinear Analysis, Volume 192 (2020), p. 111665 | DOI:10.1016/j.na.2019.111665
  • Zhao, Peng; Fan, Engui Finite gap integration of the derivative nonlinear Schrödinger equation: A Riemann–Hilbert method, Physica D: Nonlinear Phenomena, Volume 402 (2020), p. 132213 | DOI:10.1016/j.physd.2019.132213
  • Liu, Nan; Guo, Boling Long-time asymptotics for the Sasa–Satsuma equation via nonlinear steepest descent method, Journal of Mathematical Physics, Volume 60 (2019) no. 1 | DOI:10.1063/1.5061793
  • Guo, Boling; Liu, Nan The Gerdjikov‐Ivanov–type derivative nonlinear Schrödinger equation: Long‐time dynamics of nonzero boundary conditions, Mathematical Methods in the Applied Sciences, Volume 42 (2019) no. 14, p. 4839 | DOI:10.1002/mma.5698
  • Dieng, Momar; McLaughlin, Kenneth D. T.-R.; Miller, Peter D. Dispersive Asymptotics for Linear and Integrable Equations by the ∂ ¯ Steepest Descent Method, Nonlinear Dispersive Partial Differential Equations and Inverse Scattering, Volume 83 (2019), p. 253 | DOI:10.1007/978-1-4939-9806-7_5
  • Pelinovsky, Dmitry E.; Saalmann, Aaron Inverse Scattering for the Massive Thirring Model, Nonlinear Dispersive Partial Differential Equations and Inverse Scattering, Volume 83 (2019), p. 497 | DOI:10.1007/978-1-4939-9806-7_11
  • Borghese, Michael; Jenkins, Robert; McLaughlin, Kenneth D.T.-R. Long time asymptotic behavior of the focusing nonlinear Schrödinger equation, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 35 (2018) no. 4, p. 887 | DOI:10.1016/j.anihpc.2017.08.006
  • Erdoğan, M.B.; Gürel, T.B.; Tzirakis, N. The derivative nonlinear Schrödinger equation on the half line, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 35 (2018) no. 7, p. 1947 | DOI:10.1016/j.anihpc.2018.03.006
  • Jenkins, Robert; Liu, Jiaqi; Perry, Peter; Sulem, Catherine Soliton Resolution for the Derivative Nonlinear Schrödinger Equation, Communications in Mathematical Physics, Volume 363 (2018) no. 3, p. 1003 | DOI:10.1007/s00220-018-3138-4
  • Jenkins, Robert; Liu, Jiaqi; Perry, Peter A.; Sulem, Catherine Global well-posedness for the derivative non-linear Schrödinger equation, Communications in Partial Differential Equations, Volume 43 (2018) no. 8, p. 1151 | DOI:10.1080/03605302.2018.1475489
  • Li, Sitai; Biondini, Gino Soliton interactions and degenerate soliton complexes for the focusing nonlinear Schrödinger equation with nonzero background, The European Physical Journal Plus, Volume 133 (2018) no. 10 | DOI:10.1140/epjp/i2018-12263-y

Cité par 45 documents. Sources : Crossref