We study the Cauchy problem for the focusing nonlinear Schrödinger (fNLS) equation. Using the
@article{AIHPC_2018__35_4_887_0, author = {Borghese, Michael and Jenkins, Robert and McLaughlin, Kenneth D.T.-R.}, title = {Long time asymptotic behavior of the focusing nonlinear {Schr\"odinger} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {887--920}, publisher = {Elsevier}, volume = {35}, number = {4}, year = {2018}, doi = {10.1016/j.anihpc.2017.08.006}, mrnumber = {3795020}, zbl = {1390.35020}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2017.08.006/} }
TY - JOUR AU - Borghese, Michael AU - Jenkins, Robert AU - McLaughlin, Kenneth D.T.-R. TI - Long time asymptotic behavior of the focusing nonlinear Schrödinger equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 887 EP - 920 VL - 35 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2017.08.006/ DO - 10.1016/j.anihpc.2017.08.006 LA - en ID - AIHPC_2018__35_4_887_0 ER -
%0 Journal Article %A Borghese, Michael %A Jenkins, Robert %A McLaughlin, Kenneth D.T.-R. %T Long time asymptotic behavior of the focusing nonlinear Schrödinger equation %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 887-920 %V 35 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2017.08.006/ %R 10.1016/j.anihpc.2017.08.006 %G en %F AIHPC_2018__35_4_887_0
Borghese, Michael; Jenkins, Robert; McLaughlin, Kenneth D.T.-R. Long time asymptotic behavior of the focusing nonlinear Schrödinger equation. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 887-920. doi : 10.1016/j.anihpc.2017.08.006. https://www.numdam.org/articles/10.1016/j.anihpc.2017.08.006/
[1] The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., Volume 53 (1974) no. 4, pp. 249–315
[2] Discrete Orthogonal Polynomials: Asymptotics and Applications, Ann. Math. Stud., vol. 164, Princeton University Press, Princeton, NJ, 2007 (pp. viii+170. ISBN: 978-0-691-12734-7, 0-691-12734-4) | MR | Zbl
[3] Scattering and inverse scattering for first order systems, Commun. Pure Appl. Math., Volume 37 (1984) no. 1, pp. 39–90 | DOI | MR | Zbl
[4] Direct and Inverse Scattering on the Line, Math. Surv. Monogr., vol. 28, American Mathematical Society, Providence, RI, 1988 (pp. xiv+209) | DOI
[5] Linear spectral problems, nonlinear equations and the
[6] Semiclassical soliton ensembles for the three-wave resonant interaction equations, Commun. Math. Phys., Volume 354 (2017) no. 3, pp. 1015–1100 | DOI
[7] The sine-Gordon equation in the semiclassical limit: dynamics of fluxon condensates, Mem. Am. Math. Soc., Volume 225 (2013) no. 1059 (pp. vi+136) | DOI
[8] On the asymptotic stability of N-soliton solutions of the defocusing nonlinear Schrödinger equation, Comment. Phys.-Math., Volume 343 (2016) no. 3, pp. 921–969 | DOI
[9] Long-time asymptotics for integrable nonlinear wave equations, Important Developments in Soliton Theory, Springer Ser. Nonlin. Dyn., Springer, Berlin, 1993, pp. 181–204
[10] A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. (2), Volume 137 (1993) no. 2, pp. 295–368 | DOI | MR | Zbl
[11] Long-time asymptotics for integrable systems. Higher order theory, Comment. Phys.-Math., Volume 165 (1994) no. 1, pp. 175–191 http://projecteuclid.org/euclid.cmp/1104271038 | MR | Zbl
[12] Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space, Commun. Pure Appl. Math., Volume 56 (2003) no. 8, pp. 1029–1077 (Dedicated to the memory of Jürgen K. Moser) | DOI | MR | Zbl
[13] , Lectures in Mathematical Sciences, New Ser., Volume vol. 5, Graduate School of Mathematical Sciences, University of Tokyo (1994), pp. 61
[14] Long-time asymptotics for the NLS equation via dbar methods, May 2008 | arXiv
[15] Hamiltonian Methods in the Theory of Solitons, Class. Math., Springer, Berlin, 2007 pp. x+592 (in English); Translated from the 1986 Russian original by Alexey G. Reyman
[16] Long-time asymptotics for the Korteweg–de Vries equation via nonlinear steepest descent, Math. Phys. Anal. Geom., Volume 12 (2009) no. 3, pp. 287–324 | DOI
[17] Asymptotic behavior of the solutions to the nonlinear Schrödinger equation, and isomonodromic deformations of systems of linear differential equations, Dokl. Akad. Nauk SSSR, Volume 261 (1981) no. 1, pp. 14–18
[18] Regularization of a sharp shock by the defocusing nonlinear Schrödinger equation, Nonlinearity, Volume 28 (2015) no. 7, pp. 2131 http://stacks.iop.org/0951-7715/28/i=7/a=2131 | DOI | MR | Zbl
[19] Semiclassical limit of focusing NLS for a family of square barrier initial data, Commun. Pure Appl. Math., Volume 67 (2014) no. 2, pp. 246–320 | DOI
[20] Global Well-posedness and soliton resolution for the derivative nonlinear Schrödinger equation, June 2017 | arXiv
[21] Focusing nonlinear Schrödinger equation with infinitely many solitons, J. Math. Phys., Volume 36 (1995) no. 8, pp. 4175–4180 | DOI | MR | Zbl
[22] Long time behavior for the focusing nonlinear Schrödinger equation with real spectral singularities, Comment. Phys.-Math., Volume 180 (1996) no. 2, pp. 325–341 http://projecteuclid.org/euclid.cmp/1104287351
[23] Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation, Ann. Math. Stud., vol. 154, Princeton University Press, Princeton, NJ, 2003 (pp. xii+265. ISBN: 0-691-11483-8, 0-691-11482-X) | MR | Zbl
[24] On the eigenvalues of Zakharov–Shabat systems, SIAM J. Math. Anal., Volume 34 (2003) no. 4, pp. 759–773 | DOI | MR | Zbl
[25] Long-time asymptotics of the Toda lattice for decaying initial data revisited, Rev. Math. Phys., Volume 21 (2009) no. 1, pp. 61–109 | DOI
[26] Long-time behavior of solutions to the derivative nonlinear Schrödinger equation for soliton-free initial data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 1, pp. 217–265 http://www.sciencedirect.com/science/article/pii/S0294144917300616 | DOI
[27] Effect of the radiation component on soliton motion, Phys. Rev. D (3), Volume 32 (1985) no. 6, pp. 1459–1466 | DOI | MR
[28] Soliton motion in the case of a nonzero reflection coefficient, Phys. Rev. Lett., Volume 54 (1985) no. 6, pp. 499–501 | DOI | MR
[29] The
[30] The
[31] http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions Release 1.0.14 of 2016-12-21. F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R. Miller, B.V. Saunders (Eds.)
[32] On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation, Commun. Pure Appl. Math., Volume 57 (2004) no. 7, pp. 877–985 | DOI | MR | Zbl
[33] Riemann–Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016 (pp. xviii+373) | MR | Zbl
[34] Asymptotic behavior of non-linear wave systems integrated by the inverse scattering method, Zh. Èksp. Teor. Fiz., Volume 71 (1976) no. 1, pp. 203–215 | MR
[35] Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Zh. Èksp. Teor. Fiz., Volume 61 (1971) no. 1, pp. 118–134 | MR
[36] Direct and inverse scattering transforms with arbitrary spectral singularities, Commun. Pure Appl. Math., Volume 42 (1989) no. 7, pp. 895–938 | DOI | MR | Zbl
[37]
Cité par Sources :