This paper deals with collisionless transport equations in bounded open domains
Mots-clés : Kinetic equation, Stochastic semigroup, Convergence to equilibrium
@article{AIHPC_2020__37_4_877_0, author = {Lods, B. and Mokhtar-Kharroubi, M. and Rudnicki, R.}, title = {Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {877--923}, publisher = {Elsevier}, volume = {37}, number = {4}, year = {2020}, doi = {10.1016/j.anihpc.2020.02.004}, mrnumber = {4104829}, zbl = {1439.82037}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.02.004/} }
TY - JOUR AU - Lods, B. AU - Mokhtar-Kharroubi, M. AU - Rudnicki, R. TI - Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 877 EP - 923 VL - 37 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.02.004/ DO - 10.1016/j.anihpc.2020.02.004 LA - en ID - AIHPC_2020__37_4_877_0 ER -
%0 Journal Article %A Lods, B. %A Mokhtar-Kharroubi, M. %A Rudnicki, R. %T Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 877-923 %V 37 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.02.004/ %R 10.1016/j.anihpc.2020.02.004 %G en %F AIHPC_2020__37_4_877_0
Lods, B.; Mokhtar-Kharroubi, M.; Rudnicki, R. Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 4, pp. 877-923. doi : 10.1016/j.anihpc.2020.02.004. http://www.numdam.org/articles/10.1016/j.anihpc.2020.02.004/
[1] On the speed of approach to equilibrium for a collisionless gas, Kinet. Relat. Models, Volume 4 (2011), pp. 87–107 | DOI | MR | Zbl
[2] One-Parameter Semigroups of Positive Operators, Lecture Notes in Math., vol. 1184, Springer-Verlag, Berlin, 1986 | DOI | MR
[3] Boltzmann asymptotics with diffuse reflection boundary conditions, Monatshefte Math., Volume 123 (1997), pp. 285–298 | DOI | MR | Zbl
[4] Dynamical Systems, Differential Equations and Applications. 8th AIMS Conference. Suppl. Vol. I, Discrete Contin. Dyn. Syst., Ser. A (2011), pp. 102–111 | MR | Zbl
[5] Substochastic semigroups for transport equations with conservative boundary conditions, J. Evol. Equ., Volume 5 (2005), pp. 485–508 | DOI | MR | Zbl
[6] Transport semigroup associated to positive boundary conditions of unit norm: a Dyson-Phillips approach, Discrete Contin. Dyn. Syst., Ser. B, Volume 19 (2014), pp. 2739–2766 | MR | Zbl
[7] A new approach to transport equations associated to a regular field: trace results and well–posedness, Mediterr. J. Math., Volume 6 (2009), pp. 367–402 | DOI | MR | Zbl
[8] On general transport equations with abstract boundary conditions. The case of divergence free force field, Mediterr. J. Math., Volume 8 (2011), pp. 1–35 | DOI | MR | Zbl
[9] Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport, Ann. Sci. Éc. Norm. Supér., Volume 3 (1970), pp. 185–233 | Numdam | MR | Zbl
[10] Abstract time-dependent transport equations, J. Math. Anal. Appl., Volume 121 (1987), pp. 370–405 | DOI | MR | Zbl
[11] A semigroup approach to the convergence rate of a collisionless gas, 2019 | arXiv | MR
[12] A coupling approach for the convergence to equilibrium for a collisionless gas, 2019 | arXiv
[13] Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011 | DOI | MR | Zbl
[14] Asymptotic stability of the Boltzmann equation with Maxwell boundary conditions, J. Differ. Equ., Volume 261 (2016), pp. 7000–7079 | DOI | MR | Zbl
[15] Measure Theory, Vol. I, Springer-Verlag, Berlin, 2007 | DOI | MR | Zbl
[16] Théorèmes de traces
[17] Théorèmes de traces pour les espaces de fonctions de la neutronique, C. R. Acad. Sci. Paris, Ser. I, Volume 300 (1985), pp. 89–92 | MR | Zbl
[18] Regularity for diffuse reflection boundary problem to the stationary linearized Boltzmann equation in a convex domain, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 36 (2019) no. 3, pp. 745–782 | Numdam | MR | Zbl
[19] Linear modulus of linear operator, Proc. Am. Math. Soc., Volume 15 (1964), pp. 553–559 | MR | Zbl
[20] Billiards in a general domain with random reflections, Arch. Ration. Mech. Anal., Volume 191 (2009), pp. 497–537 | DOI | MR | Zbl
[21] Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 6: Evolution Problems II, Springer, Berlin, 2000 | Zbl
[22] One-Parameter Semigroups, Academic Press, 1980 | MR | Zbl
[23] Stochastic billiards on general tables, Ann. Appl. Probab., Volume 11 (2001), pp. 419–437 | DOI | MR | Zbl
[24] The Ergodic Theory of Markov Processes, Van Nostrand Reinhold Comp., New York, 1969 | MR | Zbl
[25] Decay and continuity of the Boltzmann equation in bounded domains, Arch. Ration. Mech. Anal., Volume 197 (2010), pp. 713–809 | MR | Zbl
[26] Free molecular flow with boundary effect, Commun. Math. Phys., Volume 318 (2013), pp. 375–409 | MR | Zbl
[27] Formation and propagation of discontinuity for Boltzmann equation in non-convex domains, Commun. Math. Phys., Volume 308 (2011), pp. 641–701 | MR | Zbl
[28] Classical Banach Spaces, I. Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92, Springer-Verlag, Berlin-New York, 1977 | MR | Zbl
[29] B. Lods, M. Mokhtar-Kharroubi, A quantitative tauberian approach to collisionless transport equations with diffuse boundary conditions, work in progress.
[30] Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators, 2018 | arXiv | MR
[31] B. Lods Mokhtar-Kharroubi, R. Rudnicki, On stochastic billiards, work in preparation.
[32] Frobenius theory of positive operators: comparison theorems and applications, SIAM J. Appl. Math., Volume 19 (1970), pp. 607–628 | DOI | MR | Zbl
[33] Kinetic equations with Maxwell boundary conditions, Ann. Sci. Éc. Norm. Supér., Volume 43 (2010), pp. 719–760 | Numdam | MR | Zbl
[34] On collisionless transport semigroups with boundary operators of norm one, J. Evol. Equ., Volume 8 (2008), pp. 327–352 | DOI | MR | Zbl
[35] On asymptotic stability and sweeping of collisionless kinetic equations, Acta Appl. Math., Volume 147 (2017), pp. 19–38 | DOI | MR | Zbl
[36] Rates of convergence to equilibrium for collisionless kinetic equations in slab geometry, J. Funct. Anal., Volume 275 (2018), pp. 2404–2452 | DOI | MR | Zbl
[37] On strictly singular and strictly cosingular operators. II. Strictly singular and strictly cosingular operators in
[38] Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., Volume 249 (2000), pp. 668–685 | DOI | MR | Zbl
[39] Asymptotic decomposition of substochastic operators and semigroups, J. Math. Anal. Appl., Volume 436 (2016), pp. 305–321 | DOI | MR | Zbl
[40] On asymptotic stability and sweeping for Markov operators, Bull. Pol. Acad., Math., Volume 43 (1995), pp. 245–262 | MR | Zbl
[41] Piecewise Deterministic Processes in Biological Models, SpringerBriefs in Applied Sciences and Technology, Mathematical Methods, Springer, Cham, Switzerland, 2017 | DOI | MR
[42] Essentials of Integration Theory for Analysis, Springer, 2011 | DOI | MR | Zbl
[43] Functional analytic treatment of the initial boundary value problem for collisionless gases, 1981 (Habilitationsschrift, München)
Cité par Sources :