We investigate the regularity issue for the diffuse reflection boundary problem to the stationary linearized Boltzmann equation for hard sphere potential, cutoff hard potential, or cutoff Maxwellian molecular gases in a strictly convex bounded domain. We obtain pointwise estimates for first derivatives of the solution provided the boundary temperature is bounded differentiable and the solution is bounded. This result can be understood as a stationary version of the velocity averaging lemma and mixture lemma.
@article{AIHPC_2019__36_3_745_0, author = {Chen, I-Kun and Hsia, Chun-Hsiung and Kawagoe, Daisuke}, title = {Regularity for diffuse reflection boundary problem to the stationary linearized {Boltzmann} equation in a convex domain}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {745--782}, publisher = {Elsevier}, volume = {36}, number = {3}, year = {2019}, doi = {10.1016/j.anihpc.2018.09.002}, mrnumber = {3926521}, zbl = {1411.35058}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.09.002/} }
TY - JOUR AU - Chen, I-Kun AU - Hsia, Chun-Hsiung AU - Kawagoe, Daisuke TI - Regularity for diffuse reflection boundary problem to the stationary linearized Boltzmann equation in a convex domain JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 745 EP - 782 VL - 36 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2018.09.002/ DO - 10.1016/j.anihpc.2018.09.002 LA - en ID - AIHPC_2019__36_3_745_0 ER -
%0 Journal Article %A Chen, I-Kun %A Hsia, Chun-Hsiung %A Kawagoe, Daisuke %T Regularity for diffuse reflection boundary problem to the stationary linearized Boltzmann equation in a convex domain %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 745-782 %V 36 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2018.09.002/ %R 10.1016/j.anihpc.2018.09.002 %G en %F AIHPC_2019__36_3_745_0
Chen, I-Kun; Hsia, Chun-Hsiung; Kawagoe, Daisuke. Regularity for diffuse reflection boundary problem to the stationary linearized Boltzmann equation in a convex domain. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 745-782. doi : 10.1016/j.anihpc.2018.09.002. http://www.numdam.org/articles/10.1016/j.anihpc.2018.09.002/
[1] L1 solutions to the stationary Boltzmann equation in a slab, Ann. Fac. Sci. Toulouse Math. (6), Volume 9 (2000) no. 3, pp. 375–413 | DOI | Numdam | MR | Zbl
[2] The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous, Commun. Math. Phys., Volume 74 (1980) no. 1, pp. 71–95 | DOI | MR | Zbl
[3] Comparison Theorems in Riemannian Geometry, vol. 365, AMS Chelsea Publishing, 1975 (161 pp) | MR | Zbl
[4] Boundary singularity of moments for the linearized Boltzmann equation, J. Stat. Phys., Volume 153 (2013) no. 1, pp. 93–118 | MR | Zbl
[5] Singularity of the velocity distribution function in molecular velocity space, Commun. Math. Phys., Volume 341 (2016) no. 1, pp. 105–134 | MR | Zbl
[6] Regularity of stationary solutions to the linearized Boltzmann equations, SIAM J. Math. Anal., Volume 50 (2018) no. 1, pp. 138–161 | MR | Zbl
[7] Singularity of macroscopic variables near boundary for gases with cutoff hard potential, SIAM J. Math. Anal., Volume 47 (2015) no. 6, pp. 4332–4349 | MR | Zbl
[8] Boundary singularity for thermal transpiration problem of the linearized Boltzmann equation, Arch. Ration. Mech. Anal., Volume 212 (2014) no. 2, pp. 575–595 | MR | Zbl
[9] Riemannian Geometry. Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992 (Translated from the second Portuguese edition by Francis Flaherty, xiv+300 pp) | MR | Zbl
[10] Existence of solutions to the stationary linear Boltzmann equation, Transp. Theory Stat. Phys., Volume 32 (2003) no. 1, pp. 37–62 | DOI | MR | Zbl
[11] Decay and continuity of the Boltzmann equation in bounded domains, Arch. Ration. Mech. Anal., Volume 197 (2010), pp. 713–809 | MR | Zbl
[12] Non-isothermal boundary in the Boltzmann theory and Fourier law, Commun. Math. Phys., Volume 323 (2013) no. 1, pp. 177–239 | DOI | MR | Zbl
[13] Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d'un opérateur de transport, C. R. Acad. Sci., Paris Sér. I Math., Volume 301 (1985) no. 7, pp. 341–344 (French). A compactness result for transport equations and application to the calculation of the limit of the principal eigenvalue of a transport operator | MR | Zbl
[14] Rarefied Gas Dynamics, vol. I, Asymptotic Theory of the Boltzmann Equation, II, Academic Press, New York (1963), pp. 26–59 (Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962 82.45) | MR
[15] Problème aux limites intérieur pour l'équation de Boltzmann linéaire, J. Méc., Volume 9 (1970), pp. 443–490 (French) | MR | Zbl
[16] Problème aux limites intérieur pour l'équation de Boltzmann en régime stationnaire, faiblement non linèaire, J. Méc., Volume 11 (1972), pp. 183–231 | MR | Zbl
[17] Regularity of the Boltzmann equation in convex domains, Invent. Math., Volume 207 (2017) no. 1, pp. 115–290 | MR | Zbl
[18] BV-regularity of the Boltzmann equation in non-convex domains, Arch. Ration. Mech. Anal., Volume 220 (2016) no. 3, pp. 1045–1093 | MR | Zbl
[19] Formation and propagation of discontinuity for Boltzmann equation in non-convex domains, Commun. Math. Phys., Volume 308 (2011) no. 3, pp. 641–701 | MR | Zbl
[20] The Green's function and large-time behavior of solutions for the one-dimensional Boltzmann equation, Commun. Pure Appl. Math., Volume 57 (2004) no. 12, pp. 1543–1608 | MR | Zbl
[21] Poiseuille and thermal transpiration flows of a highly rarefied gas: over-concentration in the velocity distribution function, J. Fluid Mech., Volume 669 (2011), pp. 242–259 | DOI | Zbl
Cité par Sources :