Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 4, pp. 877-923.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

This paper deals with collisionless transport equations in bounded open domains ΩRd (d2) with C1 boundary ∂Ω, orthogonally invariant velocity measure m(dv) with support VRd and stochastic partly diffuse boundary operators H relating the outgoing and incoming fluxes. Under very general conditions, such equations are governed by stochastic C0-semigroups (UH(t))t0 on L1(Ω×V,dxm(dv)). We give a general criterion of irreducibility of (UH(t))t0 and we show that, under very natural assumptions, if an invariant density exists then (UH(t))t0 converges strongly (not simply in Cesarò means) to its ergodic projection. We show also that if no invariant density exists then (UH(t))t0 is sweeping in the sense that, for any density φ, the total mass of UH(t)φ concentrates near suitable sets of zero measure as t+. We show also a general weak compactness theorem of interest for the existence of invariant densities. This theorem is based on several results on smoothness and transversality of the dynamical flow associated to (UH(t))t0.

DOI : 10.1016/j.anihpc.2020.02.004
Classification : 82C40, 35F15, 47D06
Mots-clés : Kinetic equation, Stochastic semigroup, Convergence to equilibrium
Lods, B. 1 ; Mokhtar-Kharroubi, M. 2 ; Rudnicki, R. 3

1 Università degli Studi di Torino & Collegio Carlo Alberto, Department of Economics and Statistics, Corso Unione Sovietica, 218/bis, 10134 Torino, Italy
2 Université de Bourgogne Franche-Comté, Laboratoire de Mathématiques, CNRS UMR 6623, 16, route de Gray, 25030 Besançon Cedex, France
3 Institute of Mathematics, Polish Academy of Sciences, Bankowa 14, 40-007 Katowice, Poland
@article{AIHPC_2020__37_4_877_0,
     author = {Lods, B. and Mokhtar-Kharroubi, M. and Rudnicki, R.},
     title = {Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {877--923},
     publisher = {Elsevier},
     volume = {37},
     number = {4},
     year = {2020},
     doi = {10.1016/j.anihpc.2020.02.004},
     mrnumber = {4104829},
     zbl = {1439.82037},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.02.004/}
}
TY  - JOUR
AU  - Lods, B.
AU  - Mokhtar-Kharroubi, M.
AU  - Rudnicki, R.
TI  - Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 877
EP  - 923
VL  - 37
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.02.004/
DO  - 10.1016/j.anihpc.2020.02.004
LA  - en
ID  - AIHPC_2020__37_4_877_0
ER  - 
%0 Journal Article
%A Lods, B.
%A Mokhtar-Kharroubi, M.
%A Rudnicki, R.
%T Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 877-923
%V 37
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.02.004/
%R 10.1016/j.anihpc.2020.02.004
%G en
%F AIHPC_2020__37_4_877_0
Lods, B.; Mokhtar-Kharroubi, M.; Rudnicki, R. Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 4, pp. 877-923. doi : 10.1016/j.anihpc.2020.02.004. http://www.numdam.org/articles/10.1016/j.anihpc.2020.02.004/

[1] Aoki, K.; Golse, F. On the speed of approach to equilibrium for a collisionless gas, Kinet. Relat. Models, Volume 4 (2011), pp. 87–107 | DOI | MR | Zbl

[2] Arendt, W.; Grabosch, A.; Greiner, G.; Groh, U.; Lotz, H.P.; Moustakas, U.; Nagel, R.; Neubrander, F.; Schlotterbeck, U. One-Parameter Semigroups of Positive Operators, Lecture Notes in Math., vol. 1184, Springer-Verlag, Berlin, 1986 | DOI | MR

[3] Arkeryd, L.; Nouri, A. Boltzmann asymptotics with diffuse reflection boundary conditions, Monatshefte Math., Volume 123 (1997), pp. 285–298 | DOI | MR | Zbl

[4] Arlotti, L. Dynamical Systems, Differential Equations and Applications. 8th AIMS Conference. Suppl. Vol. I, Discrete Contin. Dyn. Syst., Ser. A (2011), pp. 102–111 | MR | Zbl

[5] Arlotti, L.; Lods, B. Substochastic semigroups for transport equations with conservative boundary conditions, J. Evol. Equ., Volume 5 (2005), pp. 485–508 | DOI | MR | Zbl

[6] Arlotti, L.; Lods, B. Transport semigroup associated to positive boundary conditions of unit norm: a Dyson-Phillips approach, Discrete Contin. Dyn. Syst., Ser. B, Volume 19 (2014), pp. 2739–2766 | MR | Zbl

[7] Arlotti, L.; Banasiak, J.; Lods, B. A new approach to transport equations associated to a regular field: trace results and well–posedness, Mediterr. J. Math., Volume 6 (2009), pp. 367–402 | DOI | MR | Zbl

[8] Arlotti, L.; Banasiak, J.; Lods, B. On general transport equations with abstract boundary conditions. The case of divergence free force field, Mediterr. J. Math., Volume 8 (2011), pp. 1–35 | DOI | MR | Zbl

[9] Bardos, C. Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport, Ann. Sci. Éc. Norm. Supér., Volume 3 (1970), pp. 185–233 | Numdam | MR | Zbl

[10] Beals, R.; Protopopescu, V. Abstract time-dependent transport equations, J. Math. Anal. Appl., Volume 121 (1987), pp. 370–405 | DOI | MR | Zbl

[11] Bernou, A. A semigroup approach to the convergence rate of a collisionless gas, 2019 | arXiv | MR

[12] Bernou, A.; Fournier, N. A coupling approach for the convergence to equilibrium for a collisionless gas, 2019 | arXiv

[13] Brézis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011 | DOI | MR | Zbl

[14] Briant, M.; Guo, Y. Asymptotic stability of the Boltzmann equation with Maxwell boundary conditions, J. Differ. Equ., Volume 261 (2016), pp. 7000–7079 | DOI | MR | Zbl

[15] Bogachev, V.I. Measure Theory, Vol. I, Springer-Verlag, Berlin, 2007 | DOI | MR | Zbl

[16] Cessenat, M. Théorèmes de traces L p pour les espaces de fonctions de la neutronique, C. R. Acad. Sci. Paris, Ser. I, Volume 299 (1984), pp. 831–834 | MR | Zbl

[17] Cessenat, M. Théorèmes de traces pour les espaces de fonctions de la neutronique, C. R. Acad. Sci. Paris, Ser. I, Volume 300 (1985), pp. 89–92 | MR | Zbl

[18] Chen, I-Kun; Hsia, C.-H.; Kawagoe, D. Regularity for diffuse reflection boundary problem to the stationary linearized Boltzmann equation in a convex domain, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 36 (2019) no. 3, pp. 745–782 | Numdam | MR | Zbl

[19] Chacon, R.V.; Krengel, U. Linear modulus of linear operator, Proc. Am. Math. Soc., Volume 15 (1964), pp. 553–559 | MR | Zbl

[20] Comets, F.; Popov, S.; Schütz, G.M.; Vachkovskaia, M. Billiards in a general domain with random reflections, Arch. Ration. Mech. Anal., Volume 191 (2009), pp. 497–537 | DOI | MR | Zbl

[21] Dautray, R.; Lions, J.L. Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 6: Evolution Problems II, Springer, Berlin, 2000 | Zbl

[22] Davies, E.B. One-Parameter Semigroups, Academic Press, 1980 | MR | Zbl

[23] Evans, S.N. Stochastic billiards on general tables, Ann. Appl. Probab., Volume 11 (2001), pp. 419–437 | DOI | MR | Zbl

[24] Foguel, S.R. The Ergodic Theory of Markov Processes, Van Nostrand Reinhold Comp., New York, 1969 | MR | Zbl

[25] Guo, Y. Decay and continuity of the Boltzmann equation in bounded domains, Arch. Ration. Mech. Anal., Volume 197 (2010), pp. 713–809 | MR | Zbl

[26] Kuo, H.W.; Liu, T.P.; Tsai, L.C. Free molecular flow with boundary effect, Commun. Math. Phys., Volume 318 (2013), pp. 375–409 | MR | Zbl

[27] Kim, C. Formation and propagation of discontinuity for Boltzmann equation in non-convex domains, Commun. Math. Phys., Volume 308 (2011), pp. 641–701 | MR | Zbl

[28] Lindenstrauss, J.; Tzafriri, L. Classical Banach Spaces, I. Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92, Springer-Verlag, Berlin-New York, 1977 | MR | Zbl

[29] B. Lods, M. Mokhtar-Kharroubi, A quantitative tauberian approach to collisionless transport equations with diffuse boundary conditions, work in progress.

[30] Lods, B.; Mokhtar-Kharroubi, M.; Rudnicki, R. Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators, 2018 | arXiv | MR

[31] B. Lods Mokhtar-Kharroubi, R. Rudnicki, On stochastic billiards, work in preparation.

[32] Marek, I. Frobenius theory of positive operators: comparison theorems and applications, SIAM J. Appl. Math., Volume 19 (1970), pp. 607–628 | DOI | MR | Zbl

[33] Mischler, S. Kinetic equations with Maxwell boundary conditions, Ann. Sci. Éc. Norm. Supér., Volume 43 (2010), pp. 719–760 | Numdam | MR | Zbl

[34] Mokhtar-Kharroubi, M. On collisionless transport semigroups with boundary operators of norm one, J. Evol. Equ., Volume 8 (2008), pp. 327–352 | DOI | MR | Zbl

[35] Mokhtar-Kharroubi, M.; Rudnicki, R. On asymptotic stability and sweeping of collisionless kinetic equations, Acta Appl. Math., Volume 147 (2017), pp. 19–38 | DOI | MR | Zbl

[36] Mokhtar-Kharroubi, M.; Seifert, D. Rates of convergence to equilibrium for collisionless kinetic equations in slab geometry, J. Funct. Anal., Volume 275 (2018), pp. 2404–2452 | DOI | MR | Zbl

[37] Pelczyński, A. On strictly singular and strictly cosingular operators. II. Strictly singular and strictly cosingular operators in L1(ν)-spaces, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., Volume 13 (1965), pp. 37–41 | MR | Zbl

[38] Pichór, K.; Rudnicki, R. Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., Volume 249 (2000), pp. 668–685 | DOI | MR | Zbl

[39] Pichór, K.; Rudnicki, R. Asymptotic decomposition of substochastic operators and semigroups, J. Math. Anal. Appl., Volume 436 (2016), pp. 305–321 | DOI | MR | Zbl

[40] Rudnicki, R. On asymptotic stability and sweeping for Markov operators, Bull. Pol. Acad., Math., Volume 43 (1995), pp. 245–262 | MR | Zbl

[41] Rudnicki, R.; Tyran-Kamińska, M. Piecewise Deterministic Processes in Biological Models, SpringerBriefs in Applied Sciences and Technology, Mathematical Methods, Springer, Cham, Switzerland, 2017 | DOI | MR

[42] Stroock, D.W. Essentials of Integration Theory for Analysis, Springer, 2011 | DOI | MR | Zbl

[43] Voigt, J. Functional analytic treatment of the initial boundary value problem for collisionless gases, 1981 (Habilitationsschrift, München)

Cité par Sources :