Hölder estimates for fractional parabolic equations with critical divergence free drifts
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 3, pp. 577-604.

This work focuses on drift-diffusion equations with fractional dissipation (Δ)α in the regime α(1/2,1). Our main result is an a priori Hölder estimate on smooth solutions to the Cauchy problem, starting from initial data with finite energy. We prove that for some β(0,1), the Cβ norm of the solution depends only on the size of the drift in critical spaces of the form Ltq(BMOxγ) with q>2 and γ(0,2α1], along with the Lx2 norm of the initial datum. The proof uses the Caffarelli/Vasseur variant of De Giorgi's method for non-local equations.

DOI : 10.1016/j.anihpc.2017.06.004
Mots clés : Fractional parabolic equations, BMO, De Giorgi's method for non-local equations, Drift in critical spaces, Regularity
@article{AIHPC_2018__35_3_577_0,
     author = {Delgadino, Mat{\'\i}as G. and Smith, Scott},
     title = {H\"older estimates for fractional parabolic equations with critical divergence free drifts},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {577--604},
     publisher = {Elsevier},
     volume = {35},
     number = {3},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.06.004},
     mrnumber = {3778643},
     zbl = {1391.35083},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.06.004/}
}
TY  - JOUR
AU  - Delgadino, Matías G.
AU  - Smith, Scott
TI  - Hölder estimates for fractional parabolic equations with critical divergence free drifts
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 577
EP  - 604
VL  - 35
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2017.06.004/
DO  - 10.1016/j.anihpc.2017.06.004
LA  - en
ID  - AIHPC_2018__35_3_577_0
ER  - 
%0 Journal Article
%A Delgadino, Matías G.
%A Smith, Scott
%T Hölder estimates for fractional parabolic equations with critical divergence free drifts
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 577-604
%V 35
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2017.06.004/
%R 10.1016/j.anihpc.2017.06.004
%G en
%F AIHPC_2018__35_3_577_0
Delgadino, Matías G.; Smith, Scott. Hölder estimates for fractional parabolic equations with critical divergence free drifts. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 3, pp. 577-604. doi : 10.1016/j.anihpc.2017.06.004. http://www.numdam.org/articles/10.1016/j.anihpc.2017.06.004/

[1] Le Bris, C.; Lions, P-L. Existence and uniqueness of solutions to Fokker–Planck type equations with irregular coefficients, Commun. Partial Differ. Equ., Volume 33 (2008) no. 7, pp. 1272–1317 | MR | Zbl

[2] Caffarelli, L.; Vasseur, A. The de Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics, Discrete Contin. Dyn. Syst., Volume 3 (2010) no. 3, pp. 409–427 | MR | Zbl

[3] Caffarelli, Luis; Silvestre, Luis An extension problem related to the fractional laplacian, Commun. Partial Differ. Equ., Volume 32 (2007) no. 8, pp. 1245–1260 | MR | Zbl

[4] Caffarelli, Luis; Vasseur, Alexis Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math., Volume 171 (2010) no. 3, pp. 1903–1930 | MR | Zbl

[5] Capella, Antonio; Dávila, Juan; Dupaigne, Louis; Sire, Yannick Regularity of radial extremal solutions for some non-local semilinear equations, Commun. Partial Differ. Equ., Volume 36 (2011) no. 8, pp. 1353–1384 | MR | Zbl

[6] Chen, Wenxiong; D'Ambrosio, Lorenzo; Li, Yan Some Louiville theorems for the fractional laplacian, Nonlinear Anal., Volume 121 (2015), pp. 370–381 | MR | Zbl

[7] Constantin, Peter; Wu, Jiahong Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 25 (2008), pp. 1103–1110 | Numdam | MR | Zbl

[8] DiPerna, Ronald J.; Lions, Pierre-Louis On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math., Volume 130 (1989) no. 2, pp. 321–366 | MR | Zbl

[9] Friedlander, Susan; Vicol, Vlad Global well-posedness for an advection–diffusion equation arising in magneto-geostrophic dynamics, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2011), pp. 283–301 | Numdam | MR | Zbl

[10] Grafakos, Loukas; Oh, Seukngly The Kato–Ponce inequality, Commun. Partial Differ. Equ., Volume 39 (2014) no. 6, pp. 1128–1157 | MR | Zbl

[11] Le Bris, C.; Lions, P-L. Renormalized solutions of some transport equations with partially W1,1 velocities and applications, Ann. Mat. Pura Appl., Volume 183 (2004) no. 1, pp. 97–130 | DOI | MR | Zbl

[12] Osada, Hirofumi Diffusion processes with generators of generalized divergence form, J. Math. Kyoto Univ., Volume 27 (1987) no. 4, pp. 597–619 | MR | Zbl

[13] Seregin, Gregory; Silvestre, Luis; Šverák, Vladimír; Zlatoš, Andrej On divergence-free drifts, J. Differ. Equ., Volume 252 (2012) no. 1, pp. 505–540 | MR | Zbl

[14] Silvestre, Luis Holder estimates for advection fractional-diffusion equations, 2010 | arXiv | Numdam | MR | Zbl

[15] Silvestre, Luis On the differentiability of the solution to an equation with drift and fractional diffusion, 2010 | arXiv | MR | Zbl

[16] Silvestre, Luis; Vicol, Vlad; Zlatoš, Andrej On the loss of continuity for super-critical drift-diffusion equations, Arch. Ration. Mech. Anal., Volume 207 (2013) no. 3, pp. 845–877 | MR | Zbl

[17] Stein, Elias M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, 2016 | MR | Zbl

[18] Strichartz, Robert S. Bounded mean-oscillation and Sobolev spaces, Indiana Univ. Math. J., Volume 29 (1980) no. 4, pp. 539–558 | MR | Zbl

Cité par Sources :