This work focuses on drift-diffusion equations with fractional dissipation in the regime . Our main result is an a priori Hölder estimate on smooth solutions to the Cauchy problem, starting from initial data with finite energy. We prove that for some , the norm of the solution depends only on the size of the drift in critical spaces of the form with and , along with the norm of the initial datum. The proof uses the Caffarelli/Vasseur variant of De Giorgi's method for non-local equations.
@article{AIHPC_2018__35_3_577_0, author = {Delgadino, Mat{\'\i}as G. and Smith, Scott}, title = {H\"older estimates for fractional parabolic equations with critical divergence free drifts}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {577--604}, publisher = {Elsevier}, volume = {35}, number = {3}, year = {2018}, doi = {10.1016/j.anihpc.2017.06.004}, mrnumber = {3778643}, zbl = {1391.35083}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.06.004/} }
TY - JOUR AU - Delgadino, Matías G. AU - Smith, Scott TI - Hölder estimates for fractional parabolic equations with critical divergence free drifts JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 577 EP - 604 VL - 35 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2017.06.004/ DO - 10.1016/j.anihpc.2017.06.004 LA - en ID - AIHPC_2018__35_3_577_0 ER -
%0 Journal Article %A Delgadino, Matías G. %A Smith, Scott %T Hölder estimates for fractional parabolic equations with critical divergence free drifts %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 577-604 %V 35 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2017.06.004/ %R 10.1016/j.anihpc.2017.06.004 %G en %F AIHPC_2018__35_3_577_0
Delgadino, Matías G.; Smith, Scott. Hölder estimates for fractional parabolic equations with critical divergence free drifts. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 3, pp. 577-604. doi : 10.1016/j.anihpc.2017.06.004. http://www.numdam.org/articles/10.1016/j.anihpc.2017.06.004/
[1] Existence and uniqueness of solutions to Fokker–Planck type equations with irregular coefficients, Commun. Partial Differ. Equ., Volume 33 (2008) no. 7, pp. 1272–1317 | MR | Zbl
[2] The de Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics, Discrete Contin. Dyn. Syst., Volume 3 (2010) no. 3, pp. 409–427 | MR | Zbl
[3] An extension problem related to the fractional laplacian, Commun. Partial Differ. Equ., Volume 32 (2007) no. 8, pp. 1245–1260 | MR | Zbl
[4] Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math., Volume 171 (2010) no. 3, pp. 1903–1930 | MR | Zbl
[5] Regularity of radial extremal solutions for some non-local semilinear equations, Commun. Partial Differ. Equ., Volume 36 (2011) no. 8, pp. 1353–1384 | MR | Zbl
[6] Some Louiville theorems for the fractional laplacian, Nonlinear Anal., Volume 121 (2015), pp. 370–381 | MR | Zbl
[7] Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 25 (2008), pp. 1103–1110 | Numdam | MR | Zbl
[8] On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math., Volume 130 (1989) no. 2, pp. 321–366 | MR | Zbl
[9] Global well-posedness for an advection–diffusion equation arising in magneto-geostrophic dynamics, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2011), pp. 283–301 | Numdam | MR | Zbl
[10] The Kato–Ponce inequality, Commun. Partial Differ. Equ., Volume 39 (2014) no. 6, pp. 1128–1157 | MR | Zbl
[11] Renormalized solutions of some transport equations with partially velocities and applications, Ann. Mat. Pura Appl., Volume 183 (2004) no. 1, pp. 97–130 | DOI | MR | Zbl
[12] Diffusion processes with generators of generalized divergence form, J. Math. Kyoto Univ., Volume 27 (1987) no. 4, pp. 597–619 | MR | Zbl
[13] On divergence-free drifts, J. Differ. Equ., Volume 252 (2012) no. 1, pp. 505–540 | MR | Zbl
[14] Holder estimates for advection fractional-diffusion equations, 2010 | arXiv | Numdam | MR | Zbl
[15] On the differentiability of the solution to an equation with drift and fractional diffusion, 2010 | arXiv | MR | Zbl
[16] On the loss of continuity for super-critical drift-diffusion equations, Arch. Ration. Mech. Anal., Volume 207 (2013) no. 3, pp. 845–877 | MR | Zbl
[17] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, 2016 | MR | Zbl
[18] Bounded mean-oscillation and Sobolev spaces, Indiana Univ. Math. J., Volume 29 (1980) no. 4, pp. 539–558 | MR | Zbl
Cité par Sources :