We analyse conditions for an evolution equation with a drift and fractional diffusion to have a Hölder continuous solution. In case the diffusion is of order one or more, we obtain Hölder estimates for the solution for any bounded drift. In the case when the diffusion is of order less than one, we require the drift to be a Hölder continuous vector field in order to obtain the same type of regularity result.
@article{ASNSP_2012_5_11_4_843_0, author = {Silvestre, Luis}, title = {H\"older estimates for advection fractional-diffusion equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {843--855}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 11}, number = {4}, year = {2012}, mrnumber = {3060702}, zbl = {1263.35056}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2012_5_11_4_843_0/} }
TY - JOUR AU - Silvestre, Luis TI - Hölder estimates for advection fractional-diffusion equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2012 SP - 843 EP - 855 VL - 11 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2012_5_11_4_843_0/ LA - en ID - ASNSP_2012_5_11_4_843_0 ER -
%0 Journal Article %A Silvestre, Luis %T Hölder estimates for advection fractional-diffusion equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2012 %P 843-855 %V 11 %N 4 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2012_5_11_4_843_0/ %G en %F ASNSP_2012_5_11_4_843_0
Silvestre, Luis. Hölder estimates for advection fractional-diffusion equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 4, pp. 843-855. http://www.numdam.org/item/ASNSP_2012_5_11_4_843_0/
[1] G. Barles and C. Imbert, Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), 567–585. | EuDML | Numdam | MR | Zbl
[2] K. Bogdan and T. Jakubowski, Estimates of heat kernel of fractional Laplacian perturbed by gradient operators, Comm. Math. Phys. 271 (2007), 179–198. | MR | Zbl
[3] L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math. 62 (2009), 597–638. | MR | Zbl
[4] L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. 171 (2010), 1903–1930. | MR | Zbl
[5] C. H. Chan, M. Czubak and L. Silvestre, Eventual regularization of the slightly supercritical fractional Burgers equation, Discrete Contin. Dyn. Syst. 27 (2010), 847–861. | MR | Zbl
[6] P. Constantin, G. Iyer and J. Wu, Global regularity for a modified critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J. 57 (2008), 2681–2692. | MR | Zbl
[7] P. Constantin and J. Wu, Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 159–180. | EuDML | Numdam | MR | Zbl
[8] A. Kiselev and F. Nazarov Variation on a theme of Caffarelli and Vasseur, J. Math. Sci. 166 (2010), 31–39. | MR | Zbl
[9] L. Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace (English summary), Indiana Univ. Math. J. 55 (2006), 1155–1174. | MR | Zbl
[10] L. Silvestre, Eventual regularization for the slightly supercritical quasi-geostrophic equation (English, French summary), Ann. Inst. H. Poincaré Anal. Non Linéare 27 (2010), 693–704. | Numdam | MR | Zbl
[11] L. Silvestre, On the differentiability of the solution to the Hamilton-Jacobi equation with critical fractional diffusion, Adv. in Math. 226 (2011), 2020–2039. | MR | Zbl
[12] L. Silvestre, Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient, Discrete Contin. Dyn. Syst. 28 (2010), 1069–1081. | MR | Zbl