Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation
Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 6, pp. 1103-1110.
@article{AIHPC_2008__25_6_1103_0,
     author = {Constantin, Peter and Wu, Jiahong},
     title = {Regularity of {H\"older} continuous solutions of the supercritical quasi-geostrophic equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1103--1110},
     publisher = {Elsevier},
     volume = {25},
     number = {6},
     year = {2008},
     doi = {10.1016/j.anihpc.2007.10.001},
     mrnumber = {2466323},
     zbl = {1149.76052},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2007.10.001/}
}
TY  - JOUR
AU  - Constantin, Peter
AU  - Wu, Jiahong
TI  - Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2008
SP  - 1103
EP  - 1110
VL  - 25
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2007.10.001/
DO  - 10.1016/j.anihpc.2007.10.001
LA  - en
ID  - AIHPC_2008__25_6_1103_0
ER  - 
%0 Journal Article
%A Constantin, Peter
%A Wu, Jiahong
%T Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2008
%P 1103-1110
%V 25
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2007.10.001/
%R 10.1016/j.anihpc.2007.10.001
%G en
%F AIHPC_2008__25_6_1103_0
Constantin, Peter; Wu, Jiahong. Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 6, pp. 1103-1110. doi : 10.1016/j.anihpc.2007.10.001. http://www.numdam.org/articles/10.1016/j.anihpc.2007.10.001/

[1] Caffarelli L., Vasseur A., Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, arXiv:, math.AP/0608447.

[2] Chae D., On the regularity conditions for the dissipative quasi-geostrophic equations, SIAM J. Math. Anal. 37 (2006) 1649-1656. | MR | Zbl

[3] Chae D., Lee J., Global well-posedness in the super-critical dissipative quasi-geostrophic equations, Commun. Math. Phys. 233 (2003) 297-311. | MR | Zbl

[4] Chen Q., Miao C., Zhang Z., A new Bernstein inequality and the 2D dissipative quasi-geostrophic equation, Commun. Math. Phys. 271 (2007) 821-838. | MR | Zbl

[5] Constantin P., Euler equations, Navier-Stokes equations and turbulence, in: Mathematical foundation of turbulent viscous flows, Lecture Notes in Math., vol. 1871, Springer, Berlin, 2006, pp. 1-43. | MR

[6] Constantin P., Cordoba D., Wu J., On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J. 50 (2001) 97-107. | MR | Zbl

[7] Constantin P., Majda A., Tabak E., Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar, Nonlinearity 7 (1994) 1495-1533. | MR | Zbl

[8] Constantin P., Wu J., Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal. 30 (1999) 937-948. | MR | Zbl

[9] Córdoba A., Córdoba D., A maximum principle applied to quasi-geostrophic equations, Commun. Math. Phys. 249 (2004) 511-528. | MR

[10] Held I., Pierrehumbert R., Garner S., Swanson K., Surface quasi-geostrophic dynamics, J. Fluid Mech. 282 (1995) 1-20. | MR | Zbl

[11] T. Hmidi, S. Keraani, On the global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces, Adv. Math., in press. | MR | Zbl

[12] Ju N., The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Commun. Math. Phys. 255 (2005) 161-181. | MR | Zbl

[13] Ju N., Global solutions to the two dimensional quasi-geostrophic equation with critical or super-critical dissipation, Math. Ann. 334 (2006) 627-642. | MR | Zbl

[14] Kiselev A., Nazarov F., Volberg A., Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math. 167 (2007) 445-453. | MR | Zbl

[15] Marchand F., Lemarié-Rieusset P.G., Solutions auto-similaires non radiales pour l'équation quasi-géostrophique dissipative critique, C. R. Math. Acad. Sci. Paris, Ser. I 341 (2005) 535-538. | MR | Zbl

[16] Pedlosky J., Geophysical Fluid Dynamics, Springer, New York, 1987. | Zbl

[17] S. Resnick, Dynamical problems in nonlinear advective partial differential equations, Ph.D. thesis, University of Chicago, 1995.

[18] Schonbek M., Schonbek T., Asymptotic behavior to dissipative quasi-geostrophic flows, SIAM J. Math. Anal. 35 (2003) 357-375. | MR | Zbl

[19] Schonbek M., Schonbek T., Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows, Discrete Contin. Dyn. Syst. 13 (2005) 1277-1304. | MR | Zbl

[20] Wu J., The quasi-geostrophic equation and its two regularizations, Comm. Partial Differential Equations 27 (2002) 1161-1181. | MR | Zbl

[21] Wu J., Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces, SIAM J. Math. Anal. 36 (2004/2005) 1014-1030. | MR | Zbl

[22] Wu J., The quasi-geostrophic equation with critical or supercritical dissipation, Nonlinearity 18 (2005) 139-154. | MR | Zbl

[23] Wu J., Solutions of the 2-D quasi-geostrophic equation in Hölder spaces, Nonlinear Anal. 62 (2005) 579-594. | MR | Zbl

[24] Wu J., Existence and uniqueness results for the 2-D dissipative quasi-geostrophic equation, Nonlinear Anal. 67 (2007) 3013-3036. | MR | Zbl

Cité par Sources :