@article{AIHPB_2005__41_2_123_0, author = {Decreusefond, L.}, title = {Stochastic integration with respect to {Volterra} processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {123--149}, publisher = {Elsevier}, volume = {41}, number = {2}, year = {2005}, doi = {10.1016/j.anihpb.2004.03.004}, mrnumber = {2124078}, zbl = {1071.60040}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpb.2004.03.004/} }
TY - JOUR AU - Decreusefond, L. TI - Stochastic integration with respect to Volterra processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2005 SP - 123 EP - 149 VL - 41 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpb.2004.03.004/ DO - 10.1016/j.anihpb.2004.03.004 LA - en ID - AIHPB_2005__41_2_123_0 ER -
%0 Journal Article %A Decreusefond, L. %T Stochastic integration with respect to Volterra processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2005 %P 123-149 %V 41 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpb.2004.03.004/ %R 10.1016/j.anihpb.2004.03.004 %G en %F AIHPB_2005__41_2_123_0
Decreusefond, L. Stochastic integration with respect to Volterra processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 41 (2005) no. 2, pp. 123-149. doi : 10.1016/j.anihpb.2004.03.004. http://www.numdam.org/articles/10.1016/j.anihpb.2004.03.004/
[1] Sobolev Spaces, Academic Press, 1975. | MR | Zbl
,[2] Stochastic Stratonovitch calculus for fractional Brownian motion with Hurst parameter less than , Taiwanese J. Math. 5 (3) (2001) 609-632. | MR | Zbl
, , ,[3] Stochastic calculus with respect to Gaussian processes, Ann. Probab. 29 (2) (2001) 766-801. | MR | Zbl
, , ,[4] Identification d'un processus gaussien multifractionnaire avec des ruptures sur la fonction d'échelle, C. R. Acad. Sci. Paris Sér. I Math. 329 (5) (1999) 435-440. | MR | Zbl
, , , ,[5] Stochastic integration with respect to fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist. 39 (1) (2003) 27-68. | Numdam | MR | Zbl
, , ,[6] Stochastic differential equations for fractional Brownian motions, C. R. Acad. Sci. Paris Sér. I Math. 331 (1) (2000) 75-80. | MR | Zbl
, ,[7] Itô's formula with respect to fractional Brownian motion and its application, J. Appl. Math. Stochastic Anal. 9 (4) (1996) 439-448. | MR | Zbl
, ,[8] Stochastic calculus for Volterra processes, C. R. Acad. Sci. Paris Sér. I Math. 334 (10) (2002) 903-908. | Zbl
,[9] Application du calcul des variations stochastiques au mouvement brownien fractionnaire, C. R. Acad. Sci. Paris Sér. I Math. 321 (12) (1995) 1605-1608. | MR | Zbl
, ,[10] Stochastic analysis of the fractional Brownian motion, Potential Anal. 10 (2) (1999) 177-214. | MR | Zbl
, ,[11] Long Range Dependence: Theory and Applications, Birkhäuser, 2002, pp. 203-226, Chapter 10.
, , (Eds.),[12] Covariation de convolution de martingales, C. R. Acad. Sci. Paris Sér. I Math. 326 (5) (1998) 601-606. | MR | Zbl
, ,[13] n-covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes, Stochastic Process. Appl. 104 (2) (2003) 259-299. | MR | Zbl
, ,[14] Capacités gaussiennes, Ann. Inst. Fourier 41 (1) (1991) 49-76. | Numdam | MR | Zbl
, ,[15] On fractional Brownian processes, Potential Anal. 10 (3) (1999) 273-288. | MR | Zbl
, ,[16] The FBM Ito's formula through analytic continuation, Electron. J. Probab. 6 (26) (2001) 22, (electronic). | MR | Zbl
, ,[17] Generalized covariations, local time and Stratonovich Itô’s formula for fractional Brownian motion with Hurst index , Ann. Probab. 31 (4) (2003) 1772-1820. | Zbl
, , ,[18] Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (2) (1998) 215-310. | MR | Zbl
,[19] Special Functions of Mathematical Physics, Birkhäuser, 1988. | MR | Zbl
, ,[20] The Malliavin Calculus and Related Topics, Springer-Verlag, 1995. | MR | Zbl
,[21] Fractional Integrals and Derivatives, Gordon and Breach Science, 1993. | MR | Zbl
, , ,[22] Estimates of the Sobolev norm of a product of two functions, J. Math. Anal. Appl. 255 (1) (2001) 137-146. | MR | Zbl
,[23] The Itô formula for anticipative processes with nonmonotonous time scale via the Malliavin calculus, Probab. Theory Related Fields 79 (1988) 249-269. | MR | Zbl
,[24] An Introduction to Analysis on Wiener Space, Lectures Notes in Mathematics, vol. 1610, Springer-Verlag, 1995. | MR | Zbl
,[25] Transformations of Measure on Wiener Spaces, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. | MR
, ,[26] Integration with respect to fractal functions and stochastic calculus, I, Probab. Theory Related Fields 111 (3) (1998) 333-374. | MR | Zbl
,Cité par Sources :