@article{AIHPB_2003__39_1_27_0, author = {Carmona, Philippe and Coutin, Laure and Montseny, G\'erard}, title = {Stochastic integration with respect to fractional brownian motion}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {27--68}, publisher = {Elsevier}, volume = {39}, number = {1}, year = {2003}, mrnumber = {1959841}, zbl = {1016.60043}, language = {en}, url = {http://www.numdam.org/item/AIHPB_2003__39_1_27_0/} }
TY - JOUR AU - Carmona, Philippe AU - Coutin, Laure AU - Montseny, Gérard TI - Stochastic integration with respect to fractional brownian motion JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2003 SP - 27 EP - 68 VL - 39 IS - 1 PB - Elsevier UR - http://www.numdam.org/item/AIHPB_2003__39_1_27_0/ LA - en ID - AIHPB_2003__39_1_27_0 ER -
%0 Journal Article %A Carmona, Philippe %A Coutin, Laure %A Montseny, Gérard %T Stochastic integration with respect to fractional brownian motion %J Annales de l'I.H.P. Probabilités et statistiques %D 2003 %P 27-68 %V 39 %N 1 %I Elsevier %U http://www.numdam.org/item/AIHPB_2003__39_1_27_0/ %G en %F AIHPB_2003__39_1_27_0
Carmona, Philippe; Coutin, Laure; Montseny, Gérard. Stochastic integration with respect to fractional brownian motion. Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) no. 1, pp. 27-68. http://www.numdam.org/item/AIHPB_2003__39_1_27_0/
[1] Stochastic calculus with respect to fractional Brownian motion with Hurst parameter less than 1/2, Stochastic Process. Appl. 86 (2000) 121-139. | MR | Zbl
, , ,[2] Elliptic Gaussian random processes, Rev. Mat. Iberoamericana 13 (1997) 19-90. | MR | Zbl
, , ,[3] Testing for a change of the long-memory parameter, Biometrika 83 (1996) 627-638. | MR | Zbl
, ,[4] Quelques espaces fonctionnels associés à des processus gaussiens. (Some function spaces associated with gaussian processes), Stud. Math. 107 (1993) 171-204. | MR | Zbl
, , ,[5] Long memory continuous time models, J. Econometrics 73 (1996) 101-150. | MR | Zbl
, ,[6] L. Coutin, Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian motions, To be published in PTRF, 2000. | Zbl
[7] Stochastic differential equations for fractional Brownian motions, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 75-80. | MR | Zbl
, ,[8] Ito's formula with respect to fractional Brownian motion and its application, J. Appl. Math. Stochastic Anal. 9 (1996) 439-448. | MR | Zbl
, ,[9] Stochastic analysis of the fractional Brownian motion, Potential Anal. 10 (1997) 177-214. | MR | Zbl
, ,[10] Probabilités et potentiel. Chapitres XVII à XXIV : Processus de Markov (fin) Compléments de calcul stochastique, Hermann, Paris, 1992.
, , ,[11] An introduction to p-variation and Young integrals, Tech. Rep. 1, Maphysto, Centre for Mathematical Physics and Stochastics, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, Denmark, 1998, Concentrated advanced course. | Zbl
, ,[12] Stochastic calculus for fractional Brownian motion I. Theory, SIAM J. Control Optim. 38 (2000) 582-612. | MR | Zbl
, , ,[13] On the approximate solution of the Stratonovitch equation, Electron. J. Probab. 3 (1998). | MR | Zbl
, ,[14] Wienersche spiralen und einige andere interessante kurven im Hilbertschen raum, S. R. (Dokl.) Acad. Sci. USSR (N.S.) 26 (1940) 115-118. | JFM | MR
,[15] Special Functions and their Applications, Dover Publications, New York, 1972, (Translated and edited by Richard A. Silverman). | MR | Zbl
,[16] On the self-similar nature of Ethernet traffic, IEEE/ACM Trans. Networking 2 (1994) 1-15.
, , , ,[17] Fubini theorem for anticipating stochastic integrals in Hilbert space, Appl. Math. Optimization 27 (1993) 313-327. | MR | Zbl
,[18] Stochastic analysis of fractional Brownian motions, Stochastics Stochastics Rep. 55 (1995) 121-140. | MR | Zbl
,[19] Theory of Martingales, Mathematics and its Applications, Kluwer Academic Publishers, 1989. | MR | Zbl
, ,[20] Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (1998) 215-310. | MR | Zbl
,[21] An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions, Bernoulli 5 (1999) 571-588. | MR | Zbl
, , ,[22] The Malliavin Calculus and Related Topics, Probability and its Applications, Springer-Verlag, New York, NY, 1995. | MR | Zbl
,[23] Integration questions related to fractional Brownian motion, Probab. Theory Related Fields (2000) 251-291. | MR | Zbl
, ,[24] Skorokhod stochastic integration with respect to non-adapted processes on Wiener space, Stochastics Stochastics Rep. 65 (1998) 13-39. | MR | Zbl
,[25] Stochastic Integration and Differential Equations, Applications of Mathematics, 21, Springer-Verlag, 1992. | Zbl
,[26] Arbitrage with fractional Brownian motion, Math. Finance 7 (1997) 95-105. | MR | Zbl
,[27] Forward, backward and symmetric stochastic integration, Probab. Theory Related Fields 97 (1993) 403-421. | MR | Zbl
, ,[28] The generalized covariation process and Itô formula, Stochastic Process. Appl. 59 (1995) 81-104. | MR | Zbl
, ,[29] Stieltjes integrals of Hölder continuous functions with applications to fractional Brownian motion, J. Statist. Phys. 100 (2000) 1049-1069. | MR | Zbl
,[30] Fractional Integrals and Derivatives, Gordon & Breach Science, 1993. | MR | Zbl
, , ,[31] A Concise Introduction to the Theory of Integration, Birkhauser, 1994. | MR | Zbl
,[32] An inequality of Hölder type, connected with Stieltjes integration, Acta Math. 67 (1936) 251-282. | MR | Zbl
,[33] Integration with respect to fractal functions and Stochastic Calculus, Probab. Theory Related Fields 111 (1998) 333-374. | MR | Zbl
,[34] On the link between fractional and stochastic calculus, in: (Ed.), Stochastic Dynamics, Conference on Random Dynamical Systems, Bremen, Germany, April 28-May 2, 1997, Springer, 1999, pp. 305-325, Dedicated to Ludwig Arnold on the occasion of his 60th birthday. | Zbl
,