Structure de Hodge mixte sur la cohomologie évanescente
Annales de l'Institut Fourier, Tome 35 (1985) no. 1, pp. 191-213.

Soit XS un morphisme propre d’un C-schéma intègre dans un germe de courbe algébrique lisse sur C. On construit une structure de Hodge mixte sur les cohomologies évanescentes en résolvant les complexes évanescents RψX et RφX par des complexes de Hodge mixtes cohomologiques. Ceci donne une majoration du niveau d’unipotence de l’action de la monodromie.

Let XS be a proper morphism of an integral C-scheme in a germ of algebraic curve smooth on C. A mixed Hodge structure on the vanishing cohomologies is constructed by resolving the vanishing complexes RψX and RφX by mixed Hodge cohomological complexes. This gives a majoration of the monodromy unipotency level.

@article{AIF_1985__35_1_191_0,
     author = {Du Bois, Philippe},
     title = {Structure de {Hodge} mixte sur la cohomologie \'evanescente},
     journal = {Annales de l'Institut Fourier},
     pages = {191--213},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {35},
     number = {1},
     year = {1985},
     doi = {10.5802/aif.1005},
     mrnumber = {86j:32056},
     zbl = {0535.14004},
     language = {fr},
     url = {https://numdam.org/articles/10.5802/aif.1005/}
}
TY  - JOUR
AU  - Du Bois, Philippe
TI  - Structure de Hodge mixte sur la cohomologie évanescente
JO  - Annales de l'Institut Fourier
PY  - 1985
SP  - 191
EP  - 213
VL  - 35
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://numdam.org/articles/10.5802/aif.1005/
DO  - 10.5802/aif.1005
LA  - fr
ID  - AIF_1985__35_1_191_0
ER  - 
%0 Journal Article
%A Du Bois, Philippe
%T Structure de Hodge mixte sur la cohomologie évanescente
%J Annales de l'Institut Fourier
%D 1985
%P 191-213
%V 35
%N 1
%I Institut Fourier
%C Grenoble
%U https://numdam.org/articles/10.5802/aif.1005/
%R 10.5802/aif.1005
%G fr
%F AIF_1985__35_1_191_0
Du Bois, Philippe. Structure de Hodge mixte sur la cohomologie évanescente. Annales de l'Institut Fourier, Tome 35 (1985) no. 1, pp. 191-213. doi : 10.5802/aif.1005. https://numdam.org/articles/10.5802/aif.1005/

[1] P. Deligne, Théorie de Hodge II, Publ. Math. de l'I.H.E.S., n° 40. | Numdam | MR | Zbl

[2] P. Deligne, Théorie de Hodge III, Publ. Math. de l'I.H.E.S., n° 44. | Numdam | Zbl

[3] P. Deligne, Equations Différentielles à Points Singuliers Réguliers, Springer Verlag Lecture Notes in Math., 163. | MR | Zbl

[4] Ph. Du Bois, Complexe de de Rham filtré d'une variété singulière, Bull. Soc. Math. France, 109 (1981), 41-81. | Numdam | Zbl

[5] F. Elzein, Structures de Hodge mixtes, C.R.A.S., Paris, t. 292, série I-409. | MR | Zbl

[6] F. Elzein, Dégénérescence diagonale I et II, C.R.A.S., Paris, t. 296, Série I-51 et 199. | Zbl

[7] G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal Embeddings, Springer Verlag Lecture Notes in Math., 339. | MR | Zbl

[8] Le Dung Trang, Faisceaux constructibles quasi-unipotents, Sém. Bourbaki, 581, Nov. 1981. | Numdam | Zbl

[9] D. Mumford, Abelian Varieties, Oxford University Press, 1970. | MR | Zbl

[10] W. Schmidt, Variation of Hodge structure : The singularities of the period mapping, Inv. Math., 22 (1973), 211-320. | MR | Zbl

[11] J. Steenbrink, Limits of Hodge Structures, Inv. Math., 31 (1976), 229-257. | MR | Zbl

[12] J. Steenbrink, Mixed Hodge Structure on the Vanishing Cohomology, Proceeding of the Nordic Summer School/NAVF, Oslo, 1976. | Zbl

[13] P. Deligne et N. Katz, SGA 7 II. Groupes de Monodromie en Géométrie Algébrique, Springer Verlag Lecture Notes in Math. 340. | Zbl

Cité par Sources :