@article{SPS_1996__30__207_0, author = {Shi, Zhan}, title = {How long does it take a transient {Bessel} process to reach its future infimum?}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {207--217}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {30}, year = {1996}, mrnumber = {1459484}, zbl = {0857.60024}, language = {fr}, url = {http://www.numdam.org/item/SPS_1996__30__207_0/} }
TY - JOUR AU - Shi, Zhan TI - How long does it take a transient Bessel process to reach its future infimum? JO - Séminaire de probabilités de Strasbourg PY - 1996 SP - 207 EP - 217 VL - 30 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_1996__30__207_0/ LA - fr ID - SPS_1996__30__207_0 ER -
%0 Journal Article %A Shi, Zhan %T How long does it take a transient Bessel process to reach its future infimum? %J Séminaire de probabilités de Strasbourg %D 1996 %P 207-217 %V 30 %I Springer - Lecture Notes in Mathematics %U http://www.numdam.org/item/SPS_1996__30__207_0/ %G fr %F SPS_1996__30__207_0
Shi, Zhan. How long does it take a transient Bessel process to reach its future infimum?. Séminaire de probabilités de Strasbourg, Tome 30 (1996), pp. 207-217. http://www.numdam.org/item/SPS_1996__30__207_0/
[B] Sur la décomposition de la trajectoire d'un processus de Lévy spectralement positif en son minimum. Ann. Inst. H. Poincaré Probab. Statist. 27 537-547. | Numdam | MR | Zbl
(1991).[C] Processus de Lévy et Conditionnement. Thèse de Doctorat de l'Université Paris VI.
(1994).[C-T] First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103 434-450. | Zbl
& (1962).[Cs-F-R] On the maximum of a Wiener process and its location. Probab. Th. Rel. Fields 76 477-497. | Zbl
, & (1987).[G-S] The occupation time of Brownian motion in a ball. J. Theoretical Probab.9 429-445. | Zbl
& (1996).[I-K] Special functions, Stieltjes transforms and infinite divisibility. SIAM J. Math. Anal.10 884-901. | Zbl
& (1979).[Ke] Some probabilistic properties of Bessel functions. Ann. Probab. 6 760-770. | MR | Zbl
(1978).[Kh] The gap between the past supremum and the future infimum of a transient Bessel process. Séminaire de Probabilités XXIX(Eds.: J. Azéma, M. Emery, P.-A. Meyer & M. Yor. Lecture Notes in Mathematics 1613, pp. 220-230. Springer, Berlin. | Numdam | Zbl
(1995).[K-S] A note on the Borel-Cantelli lemma. Illinois J. Math.8 248-251. | Zbl
& (1964).[M] Random times and decomposition theorems. In: "Probability": Proc. Symp. Pure Math. (Univ. Illinois, Urbana, 1976) 31 pp. 91-103. AMS, Providence, R.I. | MR | Zbl
(1977).[P] One-dimensional Brownian motion and the three-dimen-sional Bessel process. Adv. Appl. Prob.7 511-526. | MR | Zbl
(1975).[R-Y] Continuous Martingales and Brownian Motion. (2nd edition) Springer, Berlin. | Zbl
& (1994).[W1] Decomposing the Brownian path. Bull. Amer. Math. Soc.76 871-873. | MR | Zbl
(1970).[W2] Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. London Math. Soc. (3) 28 738-768. | MR | Zbl
(1974).