Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products
Publications Mathématiques de l'IHÉS, Tome 105 (2007), pp. 91-155.

The main result of the paper is a natural construction of the spherical subalgebra in a symplectic reflection algebra associated with a wreath-product in terms of quantum hamiltonian reduction of an algebra of differential operators on a representation space of an extended Dynkin quiver. The existence of such a construction has been conjectured in [EG]. We also present a new approach to reflection functors and shift functors for generalized preprojective algebras and symplectic reflection algebras associated with wreath-products.

@article{PMIHES_2007__105__91_0,
     author = {Etingof, Pavel and Gan, Wee Liang and Ginzburg, Victor and Oblomkov, Alexei},
     title = {Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {91--155},
     publisher = {Springer},
     volume = {105},
     year = {2007},
     doi = {10.1007/s10240-007-0005-9},
     zbl = {1188.16010},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-007-0005-9/}
}
TY  - JOUR
AU  - Etingof, Pavel
AU  - Gan, Wee Liang
AU  - Ginzburg, Victor
AU  - Oblomkov, Alexei
TI  - Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products
JO  - Publications Mathématiques de l'IHÉS
PY  - 2007
SP  - 91
EP  - 155
VL  - 105
PB  - Springer
UR  - https://www.numdam.org/articles/10.1007/s10240-007-0005-9/
DO  - 10.1007/s10240-007-0005-9
LA  - en
ID  - PMIHES_2007__105__91_0
ER  - 
%0 Journal Article
%A Etingof, Pavel
%A Gan, Wee Liang
%A Ginzburg, Victor
%A Oblomkov, Alexei
%T Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products
%J Publications Mathématiques de l'IHÉS
%D 2007
%P 91-155
%V 105
%I Springer
%U https://www.numdam.org/articles/10.1007/s10240-007-0005-9/
%R 10.1007/s10240-007-0005-9
%G en
%F PMIHES_2007__105__91_0
Etingof, Pavel; Gan, Wee Liang; Ginzburg, Victor; Oblomkov, Alexei. Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products. Publications Mathématiques de l'IHÉS, Tome 105 (2007), pp. 91-155. doi : 10.1007/s10240-007-0005-9. https://www.numdam.org/articles/10.1007/s10240-007-0005-9/

1. A. Beilinson and J. Bernstein, A proof of Jantzen conjectures, I. M. Gelfand Seminar, Adv. Soviet Math., vol. 16, part 1, pp. 1-50, Amer. Math. Soc., Providence, RI, 1993. | MR | Zbl

2. Y. Berest, P. Etingof, V. Ginzburg, Cherednik algebras and differential operators on quasi-invariants, Duke Math. J., 118 (2003), 279-337 | MR | Zbl

3. R. Bezrukavnikov, M. Finkelberg, V. Ginzburg, with an Appendix by P. Etingof, Cherednik algebras and Hilbert schemes in characteristic p , Represent. Theory, 10 (2006), 254-298 | MR | Zbl

4. M. Boyarchenko, Quantization of minimal resolutions of Kleinian singularities, Adv. Math., 211 (2007), 244-265 | MR

5. W. Crawley-Boevey, Decomposition of Marsden-Weinstein reductions for representations of quivers, Compos. Math., 130 (2002), 225-239 | MR | Zbl

6. W. Crawley-Boevey, M.P. Holland, Noncommutative deformations of Kleinian singularities, Duke Math. J., 92 (1998), 605-635 | MR | Zbl

7. C. Dunkl, E. Opdam, Dunkl operators for complex reflection groups, Proc. London Math. Soc., 86 (2003), 70-108 | MR | Zbl

8. P. Etingof, Cherednik and Hecke algebras of varieties with a finite group action, preprint. math.QA/0406499.

9. P. Etingof, V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math., 147 (2002), 243-348 | MR | Zbl

10. P. Etingof, V. Ginzburg and E. Rains, in preparation.

11. W.L. Gan, Reflection functors and symplectic reflection algebras for wreath products, Adv. Math., 205 (2006), 599-630 | MR

12. W.L. Gan, V. Ginzburg, Deformed preprojective algebras and symplectic reflection algebras for wreath products, J. Algebra, 283 (2005), 350-363 | MR

13. W. L. Gan and V. Ginzburg, Almost-commuting variety, D-modules, and Cherednik algebras, IMPR, Int. Math. Res. Pap., 2006 (2006), Article ID 26439. math.RT/0409262. | MR | Zbl

14. I. Gordon, A remark on rational Cherednik algebras and differential operators on the cyclic quiver, Glasg. Math. J., 48 (2006), 145-160 | MR

15. I. Gordon and J. T. Stafford, Rational Cherednik algebras and Hilbert schemes I, II, Adv. Math., 198 (2005), 222-274 and Duke Math. J., 132 (2006), 73-135. math.RA/0407516 and math.RT/0410293. | MR | Zbl

16. N. Guay, Cherednik algebras and Yangians, Int. Math. Res. Not., 2005 (2005), 3551-3593 | MR | Zbl

17. N. Guay, Affine Yangians and deformed double current algebras in type A, Adv. Math., 211 (2007), 436-484 | MR

18. N. Guay, Quantum algebras and symplectic reflection algebras for wreath products, preprint.

19. M.P. Holland, Quantization of the Marsden-Weinstein reduction for extended Dynkin quivers, Ann. Sci. Éc. Norm. Supér., IV. Sér., 32 (1999), 813-834 | Numdam | MR | Zbl

20. P.B. Kronheimer, The construction of ALE spaces as hyper-Kahler quotients, J. Differ. Geom., 29 (1989), 665-683 | MR | Zbl

21. G. Lusztig, Quivers, Perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc., 4 (1991), 365-421 | MR | Zbl

22. G. Lusztig, Quiver varieties and Weyl group actions, Ann. Inst. Fourier, 50 (2000), 461-489 | Numdam | MR | Zbl

23. A. Maffei, A remark on quiver varieties and Weyl groups, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 1 (2002), 649-686 | Numdam | MR

24. A. Mellit, Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation, Algebra Discrete Math., 2004 (2004), 89-110 | MR | Zbl

25. S. Montarani, Finite dimensional representations of symplectic reflection algebras associated to wreath products II, preprint. math.RT/0501156. | MR

26. I. Musson, Hilbert schemes and noncommutative deformations of type A Kleinian singularities, J. Algebra, 293 (2005), 102-129 | MR | Zbl

27. H. Nakajima, Reflection functors for quiver varieties and Weyl group actions, Math. Ann., 327 (2003), 671-721 | MR | Zbl

28. A. Oblomkov, Deformed Harish-Chandra homomorphism for the cyclic quiver, preprint. math.RT/0504395. | MR

29. C. Ringel, The rational invariants of the tame quivers, Invent. Math., 58 (1980), 217-239 | MR | Zbl

30. J.-L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math., 36 (1976), 295-312 | MR | Zbl

  • Simental, José Harish-Chandra bimodules for type A rational Cherednik algebras, Journal of Algebra, Volume 642 (2024), p. 286 | DOI:10.1016/j.jalgebra.2023.11.041
  • Bezrukavnikov, Roman; Losev, Ivan Etingof’s conjecture for quantized quiver varieties, Inventiones mathematicae, Volume 223 (2021) no. 3, p. 1097 | DOI:10.1007/s00222-020-01007-z
  • Burić, Ilija; Lacroix, Sylvain; Mann, Jeremy; Quintavalle, Lorenzo; Schomerus, Volker Gaudin models and multipoint conformal blocks. Part II. Comb channel vertices in 3D and 4D, Journal of High Energy Physics, Volume 2021 (2021) no. 11 | DOI:10.1007/jhep11(2021)182
  • Webster, Ben A categorical action on quantized quiver varieties, Mathematische Zeitschrift, Volume 292 (2019) no. 1-2, p. 611 | DOI:10.1007/s00209-018-2135-9
  • Losev, Ivan Procesi Bundles and Symplectic Reflection Algebras, Algebraic and Analytic Microlocal Analysis, Volume 269 (2018), p. 3 | DOI:10.1007/978-3-030-01588-6_1
  • Losev, Ivan Bernstein inequality and holonomic modules, Advances in Mathematics, Volume 308 (2017), p. 941 | DOI:10.1016/j.aim.2016.12.033
  • Beem, Christopher; Peelaers, Wolfger; Rastelli, Leonardo Deformation Quantization and Superconformal Symmetry in Three Dimensions, Communications in Mathematical Physics, Volume 354 (2017) no. 1, p. 345 | DOI:10.1007/s00220-017-2845-6
  • Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide The Coulomb Branch of 3d N=4 N = 4 Theories, Communications in Mathematical Physics, Volume 354 (2017) no. 2, p. 671 | DOI:10.1007/s00220-017-2903-0
  • McGerty, Kevin; Nevins, Thomas Compatibility of t-structures for quantum symplectic resolutions, Duke Mathematical Journal, Volume 165 (2016) no. 13 | DOI:10.1215/00127094-3619684
  • Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide; Hilburn, Justin Boundaries, mirror symmetry, and symplectic duality in 3d N = 4 N=4 gauge theory, Journal of High Energy Physics, Volume 2016 (2016) no. 10 | DOI:10.1007/jhep10(2016)108
  • KUWABARA, TOSHIRO BRST COHOMOLOGIES FOR SYMPLECTIC REFLECTION ALGEBRAS AND QUANTIZATIONS OF HYPERTORIC VARIETIES, Transformation Groups, Volume 20 (2015) no. 2, p. 437 | DOI:10.1007/s00031-015-9314-0
  • McGerty, Kevin; Nevins, Thomas Derived equivalence for quantum symplectic resolutions, Selecta Mathematica, Volume 20 (2014) no. 2, p. 675 | DOI:10.1007/s00029-013-0142-6
  • Losev, Ivan Isomorphisms of quantizations via quantization of resolutions, Advances in Mathematics, Volume 231 (2012) no. 3-4, p. 1216 | DOI:10.1016/j.aim.2012.06.017
  • Guay, Nicolas Quantum algebras and symplectic reflection algebras for wreath products, Representation Theory of the American Mathematical Society, Volume 14 (2010) no. 4, p. 148 | DOI:10.1090/s1088-4165-10-00366-3
  • Etingof, P.; Loktev, S.; Oblomkov, A.; Rybnikov, L. A Lie-Theoretic Construction of Spherical Symplectic Reflection Algebras, Transformation Groups, Volume 13 (2008) no. 3-4, p. 541 | DOI:10.1007/s00031-008-9035-8

Cité par 15 documents. Sources : Crossref