A remark on quiver varieties and Weyl groups
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 3, pp. 649-686.

In this paper we define an action of the Weyl group on the quiver varieties M m,λ (v) with generic (m,λ).

Classification : 14L24, 16G99
@article{ASNSP_2002_5_1_3_649_0,
     author = {Maffei, Andrea},
     title = {A remark on quiver varieties and {Weyl} groups},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {649--686},
     publisher = {Scuola normale superiore},
     volume = {Ser. 5, 1},
     number = {3},
     year = {2002},
     mrnumber = {1990675},
     zbl = {1143.14309},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2002_5_1_3_649_0/}
}
TY  - JOUR
AU  - Maffei, Andrea
TI  - A remark on quiver varieties and Weyl groups
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2002
SP  - 649
EP  - 686
VL  - 1
IS  - 3
PB  - Scuola normale superiore
UR  - http://www.numdam.org/item/ASNSP_2002_5_1_3_649_0/
LA  - en
ID  - ASNSP_2002_5_1_3_649_0
ER  - 
%0 Journal Article
%A Maffei, Andrea
%T A remark on quiver varieties and Weyl groups
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2002
%P 649-686
%V 1
%N 3
%I Scuola normale superiore
%U http://www.numdam.org/item/ASNSP_2002_5_1_3_649_0/
%G en
%F ASNSP_2002_5_1_3_649_0
Maffei, Andrea. A remark on quiver varieties and Weyl groups. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 3, pp. 649-686. http://www.numdam.org/item/ASNSP_2002_5_1_3_649_0/

[1] L. Le Bruyn - C. Procesi, Semisimple representations of quivers, Trans. Amer. Math. Soc. 317 (1990), 585-598. | MR | Zbl

[2] W. Crawley-Boevey, Geometry of the moment map for representations of quivers, preprint available at http://www.amsta.leeds.ac.uk/~pmtwc. | MR | Zbl

[3] H. Derksen - J. Weyman, Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, J. Amer. Math. Soc. 13 (2000), 467-479. | MR | Zbl

[4] G. Kempf - L. Ness, The length of vectors in representation spaces, In: “Algebraic geometry”. Proc. Summer Meeting Univ. Copenhagen 1978, Vol. 732 of LNM, Springer, 1979, pp. 233-243. | MR | Zbl

[5] G. Lusztig, On quiver varieties, Adv. Math. 136 (1998), 141-182. | MR | Zbl

[6] G. Lusztig, Quiver varieties and Weyl group actions, Ann. Inst. Fourier (Grenoble) 50 (2000), 461-489. | Numdam | MR | Zbl

[7] A. Maffei, A remark on quiver varieties and Weyl groups, preprint available at http://xxx.lanl.gov.

[8] A. Maffei, “Quiver varieties”, PhD thesis, Università di Roma “La Sapienza", 1999.

[9] L. Migliorini, Stability of homogeneous vector bundles, Boll. Un. Mat. Ital. 7-B (1996), 963-990. | MR | Zbl

[10] D. Mumford - J. Fogarty - F. Kirwan, “Geometric invariant theory”, Ergebn. der Math., Vol. 34, Springer, third edition, 1994. | MR | Zbl

[11] H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), 365-416. | MR | Zbl

[12] H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), 515-560. | MR | Zbl

[13] P. Newstead, “Introduction to moduli problems and orbit spaces”, Tata Lectures, Vol. 51, Springer, 1978. | MR | Zbl